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1 Introduction

In this article, we aim to provide the reader with a taste of Diophantine approximation, closely
following the book Exploring the Number Jungle by Edward B. Burger, and some occasional references
to the classical book An Introduction to the Theory of Numbers by Hardy and Wright.1

Firstly, what is Diophantine Approximation, and why do we even bother with it? ....

2 Farey Sequences

2.1 Properties of the Farey Sequences

Here, we uncover the arithmetic structure of the Farey Sequences. Most of the observations here were
made by J.Farey in 1816. However, he gave no proof. [HW09, p.44] Cauchy, however, immediately
provided the proofs after seeing Farey’s statement.

Definition 2.1. A Farey Sequence of order N is the ordered list of all reduced fractions between 0 and
1 having denominators not exceeding N. We denote this sequence by Fn

So for example,

F1 =

{
0

1
,
1

1

}
F2 =

{
0

1
,
1

2
,
1

1

}
F3 =

{
0

1
,
1

3
,
1

2
,
2

3
,
1

1

}
.

We take a slight detour, first considering the size of FN , before considering its arithmetical structure.

Let #(FN ) denote the number of elements in FN . For example,
#(F1) = 2,#(F2) = 3,#(F3) = 5,#(F4) = 7 and so on. Looking at the first few values for #(FN ), one
might conjecture that #(FN ) is always prime. But this is in fact not true. To disprove this conjecture,
we first need a few lemmas.

Lemma 2.2. For a positive integer N ≥ 2, the number of elements in FN having denominator N is
equal to φ(N), where φ(N) is the Euler totient function.

1A slight disclaimer: since the book is more of an exercise book, most of the proofs, unless stated otherwise have been
done by me along with some help from my supervisor. Hence, the proofs may not be the most elegant, and all errors are
most certainly mine.
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Proof. By Definition 2.1, the elements with the denominator N are precisely the fractions that have
numerators which are coprime to N, and the number of them is given by φ(N).

With this, we can derive a formula for #(FN ).

Proposition 2.3. For any N ≥ 2,

#(FN ) = 1 +

N∑
m=1

φ(m).

Proof. The statement is true for N = 1. Assuming that it is true for N = n, the number of elements
that are in Fn+1 is the sum of the number of elements in Fn and the new elements with numerator
coprime to n+ 1 and denominator n+ 1, of which there are φ(n+ 1) of them.

Using this formula, we check that #(F10) = 33, which disproves our conjecture.

Remark. While there does not exist a simple, closed formula for the formula in the previous
proposition, the simple function f(N) = 3

π2N
2 approximates the formula surprisingly well for

sufficiently large N. For example, #(F10) = 33 while 300
π2 ≈ 30.4. 2

We now go back to uncovering the underlying arithmetical structure of the Farey Sequences. From here
onwards, we shall assume that all rationals discussed are positive, along with the natural numbers
p, q, r, s, a, b, x, y

Lemma 2.4. Let p
q < r

s be two rational numbers satisfying ps− rq = −1. Then for all positive integers
λ and µ, we have

p

q
≤ λp+ µr

λq + µs
≤ r

s
.

Proof. We have that the statement is equivalent to:

p

q
≤ λp+ µr

λq + µs
≤ r

s

⇐⇒ p

q
− r

s
≤ λp+ µr

λq + µs
− r

s
≤ 0

⇐⇒ ps− rq

qs
≤ λps+ µrs− λrq − µrs

λqs+ µs2
≤ 0

⇐⇒ −1

qs
≤ −λ

λqs+ µs2
≤ 0

⇐⇒ −1

qs
≤ −1

qs+ µ
λs

2
≤ 0,

which is true, since all λ, µ, q, s are positive.

It what follows, it may be useful to note that the hypothesis in the previous Lemma could be written as

det

(
p r
q s

)
= −1

Lemma 2.5. Let p
q < r

s be two rational numbers satisfying ps− rq = −1. Suppose that a
b is a rational

number satisfying p
q ≤ a

b ≤ r
s . Then there exists nonnegative integers λ and µ such that

a = λp+ µr and b = λq + µs.

2The reader might recognise this particular function to be the average order of the Euler totient function.
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Proof. We solve directly for λ and µ. We have that:

a = λp+ µr

b = λq + µs,

Multiplying the first equation by s, and the second equation by r, then solving for λ:

as = λps+ µrs br = λqs+ µrs

as− br = λps− λqr

λ =
as− br

ps− qr
.

Now since ps− rq = −1, it follows that λ = br − as, and similarly, solving for µ we get µ = bp− aq.
Since all a, b, r, s are natural numbers, we are done.

Combining these two lemmas, we have the following.

Theorem 2.6. Let p
q < r

s be two rational numbers satisfying ps− rq = −1. Then a rational number a
b

is an element of the interval [pq ,
r
s ] if and only if a = λp+ µr and b = λq + µs for some

non-negative integers λ and µ.

Proof. Follows from Lemma 2.4 and Lemma 2.5.

Before proceeding further, we prove the following propositions, whose results come in handy when
proving further results.

Proposition 2.7. Suppose that ps− rq = −1. If gcd(λ, µ) = 1, all fractions of the form

H

K
=

λp+ µr

λq + µs

for non-negative integers λ and µ are in lowest terms.

Proof. We first note that gcd(p, q) = 1, and gcd(r, s) = 1. Now,

H = λp+ µr and K = λq + µs.

After multiplying the first equation by q and the second equation by p, we get

Hq = λpq + µrq

Kp = λpq + µsp.

Subtracting the first equation from the second and using the condition ps− rq = −1,

Hq −Kp = µ.

Similarly, we can obtain :
Hs−Kr = −λ.

Since gcd(λ, µ) = 1, the only common divisor between K and H is 1, from which the claim follows.

Proposition 2.8. No two consecutive elements in Fn can have the same denominator for n > 1.

Proof. If q > 1 and r
q succeeds p

q in Fn, then we have that p+ 1 ≤ r ≤ q. But

p

q
<

p

q − 1
<

p+ 1

q
<

r

q
.

So p
q−1 comes in between p

q and r
q , which is a contradiction.
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Proposition 2.9. If a
b and c

d are two consecutive fractions in FN , with b, d ≥ 2, then

1

bd
<

1

N
.

Proof. We note that b+ d > N, otherwise the two fractions cannot possibly be consecutive. WLOG, let
b > d, so

bd ≥ 2b > b+ d > N.

We are now ready to prove the key properties of the Farey Sequences.

Theorem 2.10. Let p
q < r

s be any two consecutive fractions in Fn. Then

det

(
p r
q s

)
= −1

Proof. We proceed by induction on n. The base case when n = 1 is true. Assume that the statement
holds for Fn−1. Let

p
q < r

s be two consecutive elements in Fn−1. Now suppose that a
b separates p

q and r
s

in Fn. Using Theorem 2.3, we infer that
a

b
=

λp+ µr

λq + µs
,

for some non-negative integer λ and µ. We now claim that λ = 1 and µ = 1, and that b = q + s.
Suppose not, since a

b is in Fn but not in Fn−1, we must have b = N. So N = λq + µs, for some

λ, µ (either one) ≥ 2. Define a new fraction ã
b̃
with ã = p+ s and b̃ = q + s. Again by Theorem 2.3 this

fraction is in between p
q < r

s . But since q + s < λq + µs < N, this fraction will be in Fn−1, contradicting

our assumption that p
q and r

s are consecutive elements in Fn−1.

Theorem 2.11. The fractions that belong to Fn but not Fn−1 are mediants of two consecutive elements
of Fn.

Proof. Let a
b be the fraction in question. Let p

q ,
r
s be such that p

q < a
b < r

s are consecutive elements in

Fn. Since
a
b is consecutive to both p

q and r
s in Fn, we have that n = b ̸= r, s, and since p

q and r
s are

consecutive in Fn−1, (
a
b is not an element of Fn−1) by Proposition 2.8, we have that b ̸= r ̸= s. Also,

from Theorem 2.6, we have that a
b is of the form

a

b
=

λp+ µs

λq + µs
.

A similar argument to the proof of Theorem 2.10 shows that we must have λ = µ = 1, and we are
done.

Remark. The converse of both previous theorems are not true. For Theorem 2.10, consider the
consecutive elements of F5 : 1

3 ,
2
5 ,

1
2 . We have that

det

(
1 1
3 2

)
= −1,

but they are not consecutive elements.

For Theorem 2.11 consider the consecutive elements inF3 : 1
3 ,

1
2 . We have that 1+1=2

3+2=5 is not in F4.

With striking similarity of the proof strategies for the previous two theorems, one might guess that
Theorem 2.10 and Theorem 2.11 are equivalent. Indeed, they are. (I omit the proof for now, and will
decide whether to add it in later, but it is in Hardy and Wright)
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2.2 Ford Circles

We take a slight detour from analysing the elements of the Farey Sequences in an arithmetic sense, and
take a more geometrical approach, namely via Ford Circles. They are a different representation of the
Farey Sequences and can give some insight to how well we can approximate arbitrary real numbers.

Definition 2.12. For a rational number p
q , we define the circle C(pq ) in the complex plane having

centre at p
q + 1

2q2 i and radius 1
2q2 . Such circles are called Ford Circles.

We present a sketch of the Ford Circles for the rationals in each set: F1,F2,F3,F4,F5 below:

(Figure out how to insert someday)

We see that the Ford Circles pack together peculiarly; one might make a few observations about them,
and we provide proofs of those observations.

Theorem 2.13. The intersection of the interiors of any two distinct Ford Circles is empty.

Proof. It suffices to show that the distance between any two circles is greater than the sum of their
radii. WLOG: we assume that p

q < r
s . We aim to show that√

(
p

q
− r

s
)2 + (

1

2q2
− 1

2s2
)2 ≥ 1

2q2
+

1

2s2
.

Which is equivalent to

(
p

q
− r

s
)2 + (

1

2q2
− 1

2s2
)2 ≥ (

1

2q2
+

1

2s2
)2

⇐⇒ (
p

q
− r

s
)2 ≥ 1

s2q2

⇐⇒ (ps− rq)2 ≥ 1,

and this is true since all p, q, r, s are non-negative integers.

Theorem 2.14. Two Ford Circles, C(pq ) and C( rs ), are tangent if and only if p
q and r

s are adjacent
elements in Fn for some N.

Proof. We start with right implies left:

Suppose p
q and r

s are consecutive elements in Fn, then we have that ps− rq = −1, and taking this into
Theorem 2.13 we are done.

Left implies right:

Since the circles are tangent to each other, by the previous theorem we deduce that ps− rq = −1. Let
N = max {q, s}. It follows that both fractions are elements of FN . Suppose p

q < r
s are not adjacent. So

there exists a fraction, say, a
b , also an element of FN seperating them. From Theorem 2.6, we have

a

b
=

λp+ µr

λq + µs
,

for some nonnegative integers λ, µ. Since N = max {q, s} , we consider two cases for b.

1. b = N

WLOG, let N = s = b, it follows that we must have µ = 0. So a
b = λp

λq = p
q , which is a

contradiction.

2. b < N

Again, WLOG, suppose that N = s. Just as before, we must have µ = 0. Notice that since a
b is

defined, we cannot never have 0λ = µ = 0. A similar argument to the previous case completes the
proof.
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Theorem 2.15. Suppose that the Ford Circles C(pq ) and C( rs ) are tangent to each other. Let C be the

circle that is tangent to C(pq ) and C( rs ) and the real axis. Then C = C(p+r
q+s ).

Proof.

In fact, we can use the Ford Circles to find excellent rational approximations to α ∈ R. One way we can
do this is by starting with the complex plane together with all the Ford Circles tangent to the real axis.
Then we draw a ray perpendicular to the real axis starting from α approaching to +∞. This ray w ill
intersect an infinite sequence of shrinking Ford Circles. The points of tangency of those circles to the
x-axis form a sequence of rational numbers approaching α, all having relatively small height 3. The
upper bound of the error will be 1

2q2 , the radius of the Ford Circles.

With that in mind, we proceed to the main results in Diophantine Approximation.

3 Discoveries of Dirichlet and Hurwitz

3.1 Dirichlet’s Theorem

Before proving Dirichlet’s Theorem, one of the fundamental theorems in Diophantine approximation, we
will need the Pigeonhole Principle.

Theorem 3.1 (Pigeonhole Principle). Suppose we have N boxes and N + 1 objects. If we were to place
the objects in the boxes, then no matter how we placed the objects, there must exist a box containing
more than one object.

Proof. We present two proofs, the first by contradiction and the second by induction.

1. Proof by contradiction: Suppose that there does not exist a box that contains more than one
object. Then we have a total of N boxes, each containing only one object, adding up to N objects,
which contradicts the fact that we have N + 1 objects.

2. Proof by induction: The base case is trivial, when we have two objects but only one box, we must
have the box contains more than one object. Now we suppose that the result is true for N + 1,
objects and N boxes, when we have N + 2 objects and N + 1 boxes, we can assign one and only
one object to a single box and we are back in the N + 1 objects case. Hence, we are done.

As a minor digression, we give an application of Theorem 3.1, demonstrating the usefulness of this
intuitively obvious theorem.

Theorem 3.2. Given any set of N positive integers, there exists a subset whose sum is divisible by N.

Proof. Let the set of N integers be denoted by {a1, a2, . . . , aN}. If any one of the integers is a multiple
of N, then we are done. So suppose not. Define the sum

S1 = a1

S2 = a1 + a2

...

Si = a1 + a2 + · · ·+ ai

...

SN = a1 + a2 + · · ·+ aN .

Again, if any one of the Si is a multiple of N, then we are done. So suppose that none of the Si is a
multiple of N. Then Si ≡ 1, 2, . . . , N − 1 (mod N). Now note that we have N sums but only N − 1

3The height of an integer is defined by h( p
q
) = max{|p|, |q|}. We can think of this ’height’ to be a measure of complexity.
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residues modulo N, so by Theorem 3.1 there must exist i.j such that Si ≡ Sj (mod N). WLOG, let
i > j, we take the subset formed by the elements of Si − Sj : {aj , aj+1, . . . , ai} and we are done.

We now prove the fundamental result of Dirichlet from 1812.

Theorem 3.3 (Dirichlet, 1812). Let α be a real number and Q be a positive integer. Then there exists
a rational number p

q such that 0 < q ≤ Q, and∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(Q+ 1)
.

Proof. We note that the inequality is equivalent to

|αq − p| ≤ 1

(Q+ 1)
. (1)

Hence, now our objective is to find integers p, q such that they satisfy (1). We partition the interval
[0, 1] into Q+ 1 equal intervals. Write iα = ⌊iα⌋+ {iα}, 4 where i ∈ {0, 1, . . . , Q}. Consider the values
{iα}, and the value 1. In total we have Q+ 2 values in the interval [0, 1] , but only Q+ 1 partitions. So
by Theorem 3.1 there exist two values amongst the set containing {iα} and 1 that are in the same
interval. We break this down into two cases. The first case is where both values are from the set of
{iα.}. Then WLOG, suppose 0 ≤ j < i ≤ Q, it follows that∣∣{iα} − {jα}

∣∣ ≤ 1

(Q+ 1)
.

Using the definition of iα, we are done. Now suppose that we have the two values lying in the same
interval being 1 and {iα} for some i. Note that we cannot have i = 0. So∣∣{iα} − 1

∣∣ ≤ 1

(Q+ 1)
.

Hence ∣∣iα− ⌊iα⌋ − 1
∣∣ ≤ 1

(Q+ 1)
,

which concludes the proof.

Remark. For certain α′s, Theorem 3.3 cannot be improved. For example, for α = a
b for some integers

a, b, we can take p = aQ
b − 1

Q+1 in (1) and both bounds in Theorem 3.3 will be sharp.

We now deduce an immediate consequence of Dirichlet’s Theorem.

Theorem 3.4. A real number α is irrational if and only if there exist infinitely many rational numbers
p
q such that ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

Proof. [HW09, p.201-202] We start with the ’only if’ direction, suppose that there are only finitely
many rationals, say n of them, indexed by pi

qi
that satisfy the statement. Then since α is irrational, we

have that α− pi

qi
̸= 0 for each i. So there exists a natural number Q such that∣∣∣∣α− pi

qi

∣∣∣∣ > 1

Q+ 1
.

By Theorem 3.3, for this value of Q, there exists another rational, p
q with∣∣∣∣α− p

q

∣∣∣∣ < 1

q(Q+ 1)
≤ 1

Q+ 1
.

4We use {x} to denote the fractional part of x, and is in the range [0,1)
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For this rational p
q , we also have ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

Hence, we found another rational not in our list of pi

qi
that satisfies the statement, a contradiction.

For the ’if’ direction, we prove the contrapositive: If α is rational, then there exists only finitely many
rationals p

q with ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

WLOG, let α ∈ [0, 1],. Since if α > 1, we can always write ⌊α⌋ = k = kq
q , and use p̃ = p+ kq instead of

p in the inequality. Write α = a
b , then ∣∣∣∣ab − p

q

∣∣∣∣ < 1

q2

1

qb
≤
∣∣∣∣aq − pb

bq

∣∣∣∣ < 1

q2
,

where the second inequality holds since all a, b, p, q are integers. It follows that we must have q < b, and
there are only finitely many rationals p

q that satisfy the statement.

Note that heuristically, this gives us a characterisation of irrationality: If we can approximate a number
too well with rationals, then it is irrational. We now provide a different proof of Dirichlet’s Theorem,
using the properties of the Farey fractions we proved previously.

Lemma 3.5. If a
b and c

d are adjacent elements in FQ, then∣∣∣∣ab − a+ c

b+ d

∣∣∣∣ ≤ 1

b(Q+ 1)
and

∣∣∣∣ cd − a+ c

b+ d

∣∣∣∣ ≤ 1

d(Q+ 1)
.

Proof. The proof is just a matter of symbol pushing.∣∣∣∣ab − a+ c

b+ d

∣∣∣∣ ≤ 1

b(Q+ 1)

⇐⇒
∣∣∣∣ab+ ad− ab− bc

b(b+ d)

∣∣∣∣ ≤ 1

b(Q+ 1)

⇐⇒
∣∣∣∣ 1

b+ d

∣∣∣∣ ≤ 1

(Q+ 1)

which is true, since a
b and c

d are adjacent elements in FQ(If not, a quick check shows that they cannot
be adjacent elements). The other inequality can be proven similarly.

We use this lemma to prove Dirichlet’s Theorem.

Alternate proof to Theorem 3.3. We fix a positive integer Q. WLOG, suppose that α ∈ [0, 1] . Let
a
b < α < c

d , where
a
b ,

c
d are consecutive elements of FQ. Suppose α < a+c

b+d . It follows that∣∣∣∣ab − α

∣∣∣∣ < ∣∣∣∣ab − a+ c

b+ d

∣∣∣∣ ≤ 1

b(Q+ 1)
.

The α < a+c
b+d case can be proven similarly; this concludes the proof. For the infiniteness of rationals

satisfying the inequality given that α is irrational, note that∣∣∣∣α− a

b

∣∣∣∣ < ∣∣∣∣ab − c

d

∣∣∣∣ = 1

bd
<

1

Q
.

Therefore, as we consider Farey Sequences of higher order, we cannot have the same fraction being a
good approximation to α, since that would imply that a

b = α, which is a contradiction. So it follows
that we can repeat the above argument infinitely many times. Hence, we conclude that there are
infinitely many fractions that satisfy the theorem.
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One might ask: is the inequality in Theorem 3.4 the best bound we could do? That is, could we replace
the upper bound with a smaller quantity? Could we increase the exponent of q?5 What about adding a
constant in front of q2? In 1891, Hurwitz discovered the best possible constant.

3.2 Hurwitz’s Theorem

We first start with a lemma.

Lemma 3.6. If x and y are positive integers, then at most one of the following inequalities can hold:

1

xy
≥ 1√

5

(
1

x2
+

1

y2

)
,

1

x(x+ y)
≥ 1√

5

(
1

x2
+

1

(x+ y)2

)
.

Proof. Suppose that both inequalities hold. Then we have both
√
5xy ≥ y2 + x2, (x)(x+ y)

√
5 ≥ (x+ y)2 + x2.

So

xy
√
5 + (x)(x+ y)

√
5 ≥ y2 + x2 + (x+ y)2 + x2

0 ≥ 2y2 + 2xy − 2xy
√
5 + 3x2 −

√
5x2

0 ≥ 4y2 − 4xy(
√
5− 1) + (6− 2

√
5)x2

0 ≥ (2y − (
√
5− 1)x)2,

which is false since x, y are positive integers.

Theorem 3.7 (Hurwitz, 1891). Let α be an irrational number. Then there exists infinitely many
rational numbers p

q such that ∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

.

Proof. WLOG, suppose α ∈ (0, 1). Fix N , where N is some positive integer. Choose two consecutive
elements of FN , say a

b and c
d with a

b < α < c
d . What is N? Now we show that one of a

b ,
c
d ,

a+c
b+d satisfies

the claim. Suppose not. Let α < a+c
b+d . Then we have the following three inequalities:

∣∣∣∣a+ c

b+ d
− α

∣∣∣∣ ≥ 1√
5(b+ d)2

(2)∣∣∣∣α− a

b

∣∣∣∣ ≥ 1√
5b2

(3)∣∣∣∣ cd − α

∣∣∣∣ ≥ 1√
5d2

. (4)

After removing the absolute signs, by inequality (2) and (3):

a+ c

b+ d
− a

b
≥ 1√

5(b+ d)2
+

1√
5b2

.

So
1

(b)(b+ d)
≥ 1√

5

(
1

(b+ d)2
+

1

b2

)
.

But also, using inequality (3) and (4),

c

d
− a

b
≥ 1√

5

(
1

b2
+

1

d2

)
⇐⇒ 1

b(b+ d)
≥ 1√

5

(
1

b2
+

1

d2

)
.

5We will answer this in Chapter xxx
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So we have a contradiction to Lemma 3.6. Now we show that there exists infinitely many rationals that
satisfy this inequality. Note that ∣∣∣∣α− a

b

∣∣∣∣ < ∣∣∣∣ab − c

d

∣∣∣∣ = 1

bd
<

1

N
,

where N is the order of the Farey Sequence. To prove that there are infinitely many rationals that
satisfy the inequality, we use the same approach as in the alternate proof of Dirichlet’s Theorem. The
proof is similar for the case α > a+c

b+d , and this concludes the proof.

Next, we will prove that the constant
√
5 is the best possible choice in that the result would no longer

hold if we choose a constant larger than
√
5. We start with a lemma.

Lemma 3.8.

(a) Show that for any rational a
b , it follows that∣∣∣∣ab − φ

∣∣∣∣ ∣∣∣∣ab − φ

∣∣∣∣ = 1

b2

∣∣∣a2 − ab− b2
∣∣∣ .

(b) Show that a2 − ab− b2 cannot equal zero (recall that b ̸= 0.)

(c) Deduce that ∣∣∣∣ab − φ

∣∣∣∣ ∣∣∣∣ab − φ

∣∣∣∣ ≥ 1

b2
.

(d) If for some positive real number m,
∣∣a
b − φ

∣∣ < 1
mb2 , then

∣∣a
b − φ

∣∣ < 1
mb2 +

√
5.

Proof.

(a) Expanding the expression:∣∣∣∣ab − φ

∣∣∣∣ ∣∣∣∣ab − φ

∣∣∣∣ = 1

b2

∣∣∣a2 − abφ− abφ+ φφb2
∣∣∣

=
1

b2

∣∣∣a2 − ab− b2
∣∣∣

(b) Suppose that a
b are in lowest terms. Then gcd(a, b) = 1. If a2 − ab− b2 = 0, then

a2

b
= 1 + a.

Since 1 + a is an integer, we have a | b, a contradiction.

(c) Follows from (b).

(d) Using the triangle inequality,∣∣∣∣ab − φ

∣∣∣∣ = ∣∣∣∣ab − φ+ φ− φ

∣∣∣∣ ≤ ∣∣∣∣ab − φ

∣∣∣∣+ |φ− φ|

≤ 1

mb2
+
√
5

We now show that the constant in Hurwitz’s Theorem is the best we can do.

Theorem 3.9. The constant
√
5 in Hurwitz’s Theorem is best possible. That is, Theorem 3.7 does not

hold if
√
5 is replaced by a larger value

11



Proof. Let φ = 1+
√
5

2 , and suppose that for this φ, there exists a real positive number m, such that∣∣∣∣φ− ai
bi

∣∣∣∣ < 1

mbi
2 ,

for infinitely many distinct fractions ai

bi
. It follows that bi → ∞ as i → ∞. Suppose not, then we have

that bi is bounded. Since there are infinitely many fractions that satisfy the inequality, ai is unbounded,
which will give us a contradiction. From Lemma 3.8, for any ai

bi
we have∣∣∣∣aibi − φ

∣∣∣∣ ∣∣∣∣aibi − φ

∣∣∣∣ ≥ 1

bi
2 ,

and ∣∣∣∣aibi − φ

∣∣∣∣ < 1

mbi
2 +

√
5.

So we have
1

mbi
2 ≤

∣∣∣∣aibi − φ

∣∣∣∣ ∣∣∣∣aibi − φ

∣∣∣∣ < ( 1

mbi
2

)(
1

mbi
2 +

√
5

)
.

It follows that

1 ≤
√
5

m
+

1

m2bi
2 .

As i → ∞, bi → ∞, so

1 ≤
√
5

m
, and m ≤

√
5.

This concludes the proof.

The proof of Theorem 3.9 reveals that we cannot do much better than the constant
√
5, since the

smaller upper bound will no longer hold for α = 1+
√
5

2 .. However, there are still some questions we can

ask: If we exclude 1+
√
5

2 , can we get a better constant? Also, how does one even compute the rational
approximates for any real number α? We answer the latter question in the next section of this article
via continued fractions. The former question will be dealt with in Chapter 6.

4 The Theory of Continued Fractions

We know that by Dirichlet’s Theorem, there exists a rational number p
q such that 1 ≤ q ≤ Q and∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(Q+ 1)
.

We now aim to compute the fraction p
q , by developing an algorithm.

Lemma 4.1. Let x0, x1, x2, . . . be real numbers such that xn ̸= 0 for n > 0. If we define the numbers pn
and qn by (

x0 1
1 0

)(
x1 1
1 0

)(
x2 1
1 0

)
. . .

(
xn 1
1 0

)
=

(
pn pn−1

qn qn−1

)
, (5)

then

pn
qn

= x0 +
1

x1 +
1

x2 +
1

. . . +
1

xn

.

12



Proof. We first check that pn and qn is in fact, well defined. By definition,(
x0 1
1 0

)(
x1 1
1 0

)(
x2 1
1 0

)
. . .

(
xn 1
1 0

)
=

(
pn pn−1

qn qn−1

)
.

Now note that we can also define pn and qn with the expression:(
x0 1
1 0

)(
x1 1
1 0

)(
x2 1
1 0

)
. . .

(
xn+1 1
1 0

)
=

(
pn+1 pn
qn+1 qn

)
.

Using the first expression, we can write(
pn pn−1

qn qn−1

)(
xn+1 1
1 0

)
=

(
pn+1 pn
qn+1 qn

)
,

where the second column entries of the product on the left is(
. . . pn
. . . qn

)
.

So the p′ns and q′ns are in fact well defined.

We now proceed to prove the main result by induction. When n = 1,(
x0 1
1 0

)(
x1 1
1 0

)
=

(
x0x1 + 1 x0

x1 1

)
=

(
p1 p0
q1 q0

)
.

Since
p1
q1

= x0 +
1

x1
=

x0x1 + 1

x1
,

the statement is true for n = 1.

Suppose that the statement is true for real numbers y0, y1, . . . , yn−1. In other words, if(
y0 1
1 0

)(
y1 1
1 0

)
. . .

(
yn−1 1
1 0

)
=

(
p′n−1 p′n−2

q′n−1 q′n−2

)
,

then
p′n−1

q′n−1

= y0 +
1

y1 +
1

. . . +
1

yn−1

.

Suppose we have the sequence of n− 1 real numbers x0, x1, . . . , xn, and we define pn and qn by:(
x0 1
1 0

)(
x1 1
1 0

)
. . .

(
xn 1
1 0

)
=

(
pn pn−1

qn qn−1

)
. (6)

Now set y0 = x0, y1 = x1, . . . yn−1 = xn−1xn+1
xn

. Then by the induction hypothesis, we have

(
x0 1
1 0

)(
x1 1
1 0

)
. . .

(
xn−1xn+1

xn
1

1 0

)
=

(
p′n−1 p′n−2

q′n−1 q′n−2

)
. (7)

Using equations 6 and 7,(
p′n−1 p′n−2

q′n−1 q′n−2

)
=

(
pn pn−1

qn qn−1

)(
xn 1
1 0

)−1(
xn−1 1
1 0

)−1
(

xn−1xn+1
xn

1

1 0

)

=

(
pn

xn
pn

qn
xn

−xnqn

)
.

13



Hence,

p′n−1 =
pn
xn

, and q′n−1 =
qn
xn

.

So finally,

pn
qn

=
p′n−1

q′n−1

= x0 +
1

x1 +
1

. . . +
xnxn−1 + 1

xn

= x0 +
1

x1 +
1

. . . +
1

xn−1 +
1

xn

,

which concludes the proof.

For ease of notation, we write
[x0, x1, . . . , xN ]

to denote the expression

x0 +
1

x1 +
1

x2 +
1

. . . +
1

xN

.

The next corollary gives a recurrence relation that can be used to easily generate the pn’s and qn’s.

Corollary 4.2. Given the notation in Lemma 4.1, it follows that

pN+1 = xN+1pN + pN−1 and qN+1 = xn+1qN + qN−1

for all N ≥ 1.

Proof. The proof is again by induction. Setting n = 1, in Lemma 4.1:(
p2 p1
q2 q1

)
=

(
x0 1
1 0

)(
x1 1
1 0

)(
x2 1
1 0

)
=

(
x0x1x2 + x2 + x0 x0x1 + 1

x1x2 + 1 x1

)
Hence

p2 = x0x1x2 + x2 + x0 = x2p1 + p0, and q2 = x1x2 + 1 = x2q1 + q0.

Suppose that the statement holds for N = n, then again by Lemma 4.1,(
pn+1 pn
qn+1 qn

)
=

(
x0 1
1 0

)(
x1 1
1 0

)
. . .

(
xn+1 1
1 0

)
=

(
pn pn−1

qn qn−1

)(
xn+1 1
1 0

)
=

(
pnxn+1 + pn−1 pn
qnxn+1 + qn−1 qn

)
So pn+1 = pnxn+1 + pn−1, and qn+1 = qnxn+1 + qn−1. This concludes the proof.
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We now see that the p′ns and q′ns are related in a simple way.

Corollary 4.3. For all N ≥ 1, pNqN−1 − pN−1qN = (−1)N+1.

Proof. Take determinants on both sides in Lemma 4.1.

The quantities pN

qN
can be expressed just in terms of x0 and the q′ns.

Lemma 4.4. Given the notation in Lemma 4.1, for any integer N ≥ 0,

pN
qN

= x0 +

N∑
n=1

(−1)n−1

qnqn−1
.

Proof. Yet again another proof by induction. When N = 1, by Lemma 4.1

p1
q1

= x0 +
1

x1
= x0 +

1

q0q1
.

Suppose that the statement holds for N-1. Using Corollary 4.3,

pN
qN

=
(−1)N+1

qNqN−1
+

pN−1

qN−1
.

Applying the inductive hypothesis,

pN
qN

=
(−1)N+1

qNqN−1
+

pN−1

qN−1
.

= x0 +

N−1∑
n=1

(−1)n−1

qnqn−1
+

(−1)N+1

qNqN−1

= x0 +

N∑
n=1

(−1)n−1

qnqn−1
.

If we further assume that the real numbers xn are positive, then we see an interesting growth pattern in
the sequence {pn

qn
}.

Corollary 4.5. If xi > 0 for all i > 0, then

p0
q0

<
p2
q2

< · · · < p2n
q2n

< · · · · · · < p2m+1

q2m+1
< · · · < p5

q5
<

p3
q3

<
p1
q1

.

Remark. This inequality encodes three different conclusions: the even-indexed terms are strictly
decreasing, the odd-indexed terms are strictly increasing, and every even-indexed term is less than every
odd-indexed term.

Proof. [HW09, p.168-169] To prove that the even-indexed terms are strictly increasing, using our
prveious lemma, we consider the difference

p2n+2

q2n+2
− p2n

q2n
=

x0 +

2n+2∑
n=1

(−1)n−1

qnqn−1

−

x0 +

2n∑
n=1

(−1)n−1

qnqn−1


= − 1

q2n+1q2n
+

1

q2n+1q2n+2

> 0,
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where the last inequality follows from the fact that xi > 0 for all i. The proof that the odd-indexed
terms are strictly decreasing is similar, again we consider

p2n+1

q2n+1
− p2n−1

q2n−1
=

x0 +

2n+1∑
n=1

(−1)n−1

qnqn−1

−

x0 +

2n−1∑
n=1

(−1)n−1

qnqn−1


=

1

q2n+1q2n
− 1

q2nq2n−1

< 0,

and we are done. Now we prove that all even-indexed terms are less than every odd-indexed term.
Suppose that we have an arbitrary even-indexed term, p2m

q2m
, and another arbitrary odd-indexed term,

p2n+1

q2n+1
. We consider three different cases:

1. If n = m, we can directly take the difference and use the previous lemma, which gives us

p2n+1

q2n+1
− p2n

q2n
=

1

q2n+1q2n
,

which is positive, hence p2n+1

q2n+1
> p2n

q2n
.

2. If n < m, since the odd-indexed terms are strictly decreasing, we have

p2m+1

q2m+1
− p2n

q2n
>

p2n+1

q2n+1
− p2n

q2n
> 0.

3. If n > m, then since the even-indexed terms are strictly increasing,

p2m+1

q2m+1
− p2n

q2n
>

p2m+1

q2m+1
− p2m

q2m
> 0.

This concludes the proof.

We now restrict the x′
ns to strictly be integers.

Theorem 4.6. If a0, a1, . . . are integers with an > 0 for all n > 0, then

lim
N→∞

[a0, a1, . . . , aN ] = α

for some irrational α. Moreoever, for all n ≥ 0,∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qnqn+1
.

Proof. [Lon87, p.221-222] The first statement is equivalent to showing that

pn
qn

→ α, as N → ∞.

From Corollary 4.5, we know that the even indexed terms are increasing and bounded above, and that
the odd-indexed terms are decreasing and bounded below. Hence, it follows that both sequences
converge to a limit. Let

lim
N→∞

p2n
q2n

= S, lim
N→∞

p2n+1

q2n+1
= T.

It remains to show that S = T. Observe that∣∣∣∣p2n+1

q2n+1
− p2n

q2n

∣∣∣∣ = 1

q2nq2n+1
,

taking limits on both sides as N → ∞, we can conclude that

S = lim
N→∞

p2n
q2n

= lim
N→∞

p2n+1

q2n+1
= T,
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as required, since the q′ns are increasing. We now check that α satisfies the inequality. Indeed, since α is
the common limit of both the odd and even-indexed sequences, α must be between any n and n+ 1.
Hence,

0 <

∣∣∣∣α− pn
qn

∣∣∣∣ < ∣∣∣∣pn+1

qn+1
− pn

qn

∣∣∣∣ = 1

qnqn+1
.

We now use the inequality to show that given that the inequality holds for all n, α must be irrational.
Suppose not, write α = a

b . The inequality can now be rewritten as∣∣∣∣ab − pn
qn

∣∣∣∣ < 1

qnqn+1

|aqn − pnb| <
b

qn+1
,

which we claim can only hold for finitely many n. In fact, since the q′ns are increasing, there exists an
integer m such that qN > b for all m > N . Therefore, |aqn − pnb| < 1, and since all a, b, pn, qn are
integers, it will lead to a contradiction to Corollary 4.5.

The expression [a0, a1, . . . ] from Theorem 4.6 is called the simple continued fraction expression of α.
The integer an is called the nth partial quotient of α, the rational number pn

qn
is the nth convergent of α.

We now describe an algorithm for determining the continued fraction expansion for any given real α.
Let α be a real number. We write ⌊α⌋ to denote the integer part of α and {α} to denote the fractional
part of α.

Suppose we are given an α and wish to find its continued fraction expansion. Let’s consider the
following procedure: Define α0 = α and let a0 = ⌊α⌋. If a0 /∈ Z, then let α1 = 1/(α0 − a0). In general, if
αn has been defined, then let an = ⌊αn⌋, and if αn /∈ Z, then let αn+1 = 1/(αn − an).

Proposition 4.7. Let the a′ns be as defined in the previous algorithm.

(a) Show that α = [a0, a1, . . . ] and that an ∈ Z and for all n > 0, an > 0.

(b) Show that pn and qn are integers and that q1, q2, . . . is an increasing sequence of positive integers.
Also show that the integers pn and qn are relatively prime.

Proof. (a) By Theorem 4.6, we know that the limit exists, say the simple continued fraction
expansion converges to β. Now we have to show that in fact α = β.

|α− β| ≤
∣∣∣∣α− pn

qn

∣∣∣∣+ ∣∣∣∣β − pn
qn

∣∣∣∣
<

∣∣∣∣α− pn
qn

∣∣∣∣+ ε

2
,

by Theorem 4.6. So it remains to show that for every ε > 0, there exists an N > 0 such that∣∣∣∣α− pn
qn

∣∣∣∣ < ε

2
,

for all n > N . Indeed, we start by writing α in the simple continued fraction expansion form
(which could be infinite). We then directly simplify the expression. Therefore,∣∣∣∣α− pn

qn

∣∣∣∣ =
∣∣∣∣∣ αn − an
Πn

i=1
[ai, ai−1, . . . , an][ai, ai−1, . . . αn]

∣∣∣∣∣ .
Now, since each term on the denominator is greater than 1 (by definition of an), and that
|αn − an| < 1, for small ε > 0, we choose N such that∣∣∣∣∣ αN − aN

ΠN
i=1

[ai, ai−1, . . . , aN ][ai, ai−1, . . . αN ]

∣∣∣∣∣ < ε

2
.
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So, for all n > N, we have ∣∣∣∣α− pn
qn

∣∣∣∣ < ε

2
,

as required.

To show that for all n > 0, an > 0, note that αn − an > 0 for all n > 0, from which the claim
follows.

(b) Since all a′ns are integers by construction, inductively, using Corollary 4.2, it follows that pn and
qn are integers. To show that q1, q2, . . . is an increasing sequence of positive integers, we note that
q0 = 1 > 0, and q1 = a1 > 0. So again by Corollary 4.2, the sequence of q′ns is increasing.

The result that the integers pn and qn are relatively prime follows from Corollary 4.3.

We now have a new criterion for rationality.

Theorem 4.8. The real number α is rational if and only if the process described above terminates in
finitely many steps.

Proof. [Old63, p.14] We start with the only if direction. Let α = a
b , with b > 0. By the algorithm

a
b = α = a0 +

1
α1

, so a = ba0 +
b
α1

. We deduce that b
α1

∈ Z. Now we define b
αi

= bi. So

b

b1
= α1 = ⌊α1⌋+ {α1} = a1 +

1

α2
.

Multiplying by b1,

b = b1α1 +
b1
α2

.

Inductively, we get the system of equations:

b = a1b1 + b2

b1 = a2b2 + b3

...

Notice that b > b1 > b2 > · · · > 0, since all of the b′is are positive. Therefore, there must exist some N
with bN+2 = 0. If bN+2 = 0, then bi = ai+1bi+1. Since

bi
bi+1

= αi+1 = ai+1, it follows that αi+1 ∈ Z and

the algorithm terminates.

For the if direction, we just have to slowly expand the fraction from the bottom, from which the claim
follows.

We now answer the question proposed in the previous chapter: how does one compute the fractions that
approximate any real number α, and how close of an approximation it is?

Theorem 4.9. Suppose that p1

q1
, p2

q2
, . . . are the convergents associated with the irrational number α. Let

Q > 1 be an integer. If n is the index satisfying qn ≤ Q < qn+1, then∣∣∣∣α− pn
qn

∣∣∣∣ ≤ 1

(Q+ 1)qn
.

Proof. Since Q, qn, qn+1 are all integers, if Q < qn+1, then Q+ 1 ≤ qn+1. Combining this with
Theorem 4.6, the claim follows.

Thus, we see that the convergents are rational numbers that satisfy Dirichlet’s Theorem. In the next
chapter, we will show that the convergents are, in some sense, the ”best” rational approximation to α.
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5 Enforcing the law of best approximates.

From Theorem 3.3, we can deduce that the inequality is equivalent to

|αq − p| ≤ 1

Q+ 1
.

Therefore, we see that the integer p is easily determined by q: p is the nearest integer to αq. Thus, we
define a new function to simplify our notation.

Definition 5.1. We define the distance to the nearest integer function, ∥ ∥, by,

∥x∥ = min{|x− n| : n ∈ Z}.

Dirichlet’s Theorem can now be restated as: There exists an integer q satisfying 1 ≤ q ≤ Q such that
∥αq∥ ≤ (Q+ 1)−1.

In this section of the article, we ask: for an irrational number α, is there an algorithm to find the
complete list of increasing positive integers {q1, q2, . . . } such that

∥αq1∥ > ∥αq2∥ > · · · > ∥αqn∥ > . . . (8)

We note that ∥αq∥ = q
∣∣∣α− p

q

∣∣∣, so in fact we are not only asking to find rationals that approach α but

also to have the feature that their distances from α are getting smaller as compared to the size of their
denominators. In other words, we are finding the complete list of what are known as
the best approximates to α.

We will soon discover that the convergents given by the continued fraction expansion of α are, in fact, a
complete collection of best approximations to α. This result, due to Lagrange, is generally known as
The Law of Best Approximates.

We begin by considering some basic properties of the ”distance to nearest integer function”.

Proposition 5.2. Let α, β ∈ R and n ∈ Z. Prove that ∥α+ β∥ ≤ ∥α∥+ ∥β∥ and ∥nα∥ ≤ |n|∥α∥. The
first inequality is known as the triangle inequality.

Proof. Let k and k′ denote the closest integer to α and β respectively. Then

∥α∥+ ∥β∥ =|α− k|+ |β − k′|
≥|α+ β − k − k′|
≥min{|α+ β − n| : n ∈ Z}
=∥α+ β∥.

Whereby the second inequality is the usual triangle inequality, and the third inequality holds because
we are considering the minimum distance across all possible n ∈ Z.

To prove the second inequality, we use a similar idea. Let k be the closest integer to α. Then,

|n|∥α∥ =|n||k − α|
=|nk − nα|
≥min{|nα−m| : m ∈ Z}.

We can write a formula for ∥α∥ in terms of the fractional part of α.

∥α∥ =

{
{α}, if {α} ≤ 1

2

1− {α}, if {α} > 1
2

.

Before finding the best approximates, we introduce a few more important identities and definitions.
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Definition 5.3. Let α be an irrational number, with α = [a0, a1, . . . ]. We define the Nth complete
quotient by αN = [aN , aN+1, . . . ].

Lemma 5.4. For an irrational number α having convergents pn

qn
and complete quotients αn, it follows

that

α =
αN+1pN + pN−1

αN+1qN + qN−1
.

Proof. Note that the continued fraction of α can be rewritten as
α = [a0, a1, . . . ] = [a0, a1, . . . , aN , αN+1]. Using Lemma 4.1, we first define p′n+1 and q′n+1 by(

a0 1
1 0

)(
a1 1
1 0

)
. . .

(
aN 1
1 0

)(
αN+1 1
1 0

)
=

(
p′N+1 p′N
q′N+1 q′N

)
. (9)

Now we note that using our usual definition of pn and qn, viz(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
aN 1
1 0

)
=

(
pN pN−1

qN qN−1

)
,

we rewrite equation 9 (
pN pN−1

qN qN−1

)(
αN+1 1
1 0

)
=

(
p′N+1 p′N
q′N+1 q′N

)
.

Hence, after noting that
p′
N+1

q′N+1
= [a0, a1, . . . aN , αN+1] = α, multiplying out the previous matrix gives us(
αN+1pN + pN−1 pN
αN+1qN + qN−1 qN

)
=

(
p′N+1 p′N
q′N+1 q′N

)
,

and the conclusion follows.

Lemma 5.5. For an irrational number α having convergents pn

qn
and complete quotients, αn, it follows

that

qNα− pN =
(−1)N

αN+1qN + qN−1
.

Proof. Write (
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
aN 1
1 0

)(
αN+1 1
1 0

)
=

(
αN+1pN + pN−1 pN
αN+1qN + qN−1 qN

)
.

Now taking determinants on both sides,

(−1)N+1 = (αN+1pN + pN−1)qN − (αN+1qN + qN−1)pN ,

simplifying and factorising the expression, we get

qNα− pN =
(−1)N

αN+1qN + qN−1
,

and we are done.

Lemma 5.6. Given the notation in Lemma 5.5, for all N > 0,

|αqN − pN | < 1

qN + qN−1
< |αqN−1 − pN−1|.

Proof. From Lemma 5.5,

|αqN − pN | = 1

αN+1qN + qN−1

<
1

qN + qN−1
.
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For the other inequality, using Lemma 5.5 along with Lemma 5.4,

|αqN−1 − pN−1| =
∣∣∣∣qN−1

αN+1pN + pN−1

αN+1qN + qN−1
− pN−1

∣∣∣∣
=

αN+1

αN+1qN + qN−1

=
1

qN + qN−1

αN+1

>
1

qN + qN−1
,

as required.

Theorem 5.7. Let α be an irrational real number having convergents pn

qn
. Then

|αq0 − p0| > |αq1 − p1| > · · · > |αqn − pn| > . . ..

Proof. This follows immediately from the previous lemma.

We will now show that the denominators of the convergents satisfy the string of inequalities in (8).

Corollary 5.8. Given the notation in Theorem 5.7 it follows that

∥αq1∥ > ∥αq2∥ > · · · > ∥αqn∥ > . . ..

Proof. We just have to show that pn is in fact the closest integer to αqn for all n, Indeed, by
Theorem 4.9,

|qnα− pn| <
1

2
,

since Q > 1. This inequality holds for all n, and we are done.

The denominators of the convergents satisfy the inequalities in (8), but do they form a complete list of
integers satisfying (8)? In other words, does there exist an integer q with qN−1 < q < qN such that

∥αqN−1∥ > ∥αq∥ > ∥αqN∥.

We will show that the answer to this question is no. Thus, the denominators of the convergents are
indeed a complete list of integers satisfying (8). We begin with a gentle lemma.

Lemma 5.9. Let α be an irrational number, and let p, q be two integers. There exists a unique integer
solution x, y to the system (

pN pN−1

qN qN−1

)(
x
y

)
=

(
p
q

)
.

Proof. Note that

det

(
pN pN−1

qN qN−1

)
= (−1)N+1.

Now taking the inverse of the matrix above on both sides,(
x
y

)
= (−1)N+1

(
qN−1 −pN−1

−qN pN

)(
p
q

)
.

Since pN , qN , pN−1, qN−1 are all integers, the claim follows.

We have finished all the buildup necessary to prove a theorem due to Lagrange from 1770, known as the
The Law of Best Approximates.
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Theorem 5.10. Let α be an irrational real number, and let pN

qN
denote the Nth convergent of α.

Suppose that p
q is a rational number satisfying 1 ≤ q ≤ qN and the ordered pair (p, q) ̸= (pN−1, qN−1),

(p, q) ̸= (pN , qN ). Then

1. |αq0 − p0| > |αq1 − p1| > · · · > |αqn − pn| > . . .,

2. |αq − p| > |αqN−1 − pN−1|.

Proof. 1. This is precisely Theorem 5.7.

2. By Lemma 5.9, we know that there exists integers x, y such that

pNx+ pN−1y = p and qNx+ qN−1y = q.

We now consider three cases : xy < 0, xy > 0, and xy = 0. We first note that the case xy > 0
immediately contradicts the initial assumption q ≤ qN . Moving on, suppose xy = 0. It follows
that we must have y ̸= 0. Suppose otherwise, then qNx = q, and since x is an integer, we reach a
contradiction.6 Now, if x = 0, then pN−1y = p and qN−1y = q. Note that y ̸= 1, otherwise we will
again produce a contradiction. Now consider

|αq − p| = |αqN−1y − pN−1y|
= |y||αqN−1 − pN−1|
> |αqN−1 − pN−1|,

since |y| > 1, as the claim requires. Now we consider the case where xy < 0. Again, we consider
the quantity

|αq − p| = |α(xqN + yqN−1)− xpN − ypN−1|
= |x(αqN − pN ) + y(αqN−1 − pN−1)|
≤ |x||αqN − pN |+ |y||αqN−1 − pN−1|,

where the final inequality is derived from the triangle inequality. Since xy < 0, we note that x, y
have different parities. Now, combining this observation with Corollary 4.1, we deduce that we
must have equality in the triangle inequality, since both terms have the same parity. Now, finally,
since we have equality in the final line, the claim follows.

Remark. The second part of Lagrange’s Theorem can be interpreted as follows: there does not exist an
integer with lower complexity/height than qN , for any N , that approximates it better than qN−1. This
is precisely what we set out to prove in the first place.

It follows immediately from Theorem 4.6 that the convergents also satisfy
∣∣∣α− p

q

∣∣∣ < 1
q2 . One might

wonder: Is the converse true? That is, if I have a rational p
q that satisfies the previous inequality, does

that imply that the rational is a convergent of α? Although the answer is no, if we tighten the upper
bound, the answer becomes yes. This is a result first discovered by Legendre.

We start with a simple lemma.

Lemma 5.11. Let a and b be two distinct real numbers. Then

ab <
1

2
(a2 + b2)

Proof. Consider the inequality (a− b)2 > 0.

Theorem 5.12. Let pN−1

qN−1
and pN

qN
be consecutive convergents to α. Then at least one of those rationals

will satisfy ∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

6Note that x must be a positive integer as well, otherwise we cannot have 1 ≤ q.
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Proof. [Bor+14] (p.35) Suppose not, then we have the following inequalities∣∣∣∣α− pn
qN

∣∣∣∣ ≥ 1

2q2N
,

∣∣∣∣α− pN−1

qN−1

∣∣∣∣ ≥ 1

2q2N−1

.

Adding both inequalities, we get∣∣∣∣α− pn
qN

∣∣∣∣+ ∣∣∣∣α− pN−1

qN−1

∣∣∣∣ ≥ 1

2

(
1

q2N
+

1

q2N−1

)

>
1

qNqN−1
,

by the previous lemma. Now, WLOG, suppose that N is even. Then, after carefully removing the
absolute values, we observe that

pN−1

qN−1
− α+ α− pN

qN
>

1

qNqN−1

pN−1

qN−1
− pN

qN
>

1

qNqN−1

pN−1qN − pNqN−1 > 1

which is a contradiction to Corollary 4.3.

Theorem 5.13 (Legendre). Suppose that p and q are relatively prime integers with q > 0 and∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

Then p
q is a convergent of α.

Proof. Choose N such that qN ≤ q < qN+1. Note that we have the following two inequalities to work
with

|αq − p| < 1

2q
and |αqN − pN | < 1

2qN
.

Now, consider the quantity |pqN − pNq|. Using the triangle inequality again

|pqN − qpN | ≤ |qN ||αq − p|+ |q||αqN − pN |
< |q||αq − p|+ |q||αq − p|

< |q|
∣∣∣∣ 12q
∣∣∣∣+ |q|

∣∣∣∣ 12q
∣∣∣∣

= 1,

where the second inequality follows from our initial assumption that qN < q and Theorem 5.10. Since
p, q, pN , qN are all integers, the bound implies that pqN − qpN = 0, and so p

q = pN

qN
, as required.

6 Markoff’s Spectrum and numbers

We now return to the question at the end of Chapter 3: Suppose that we exclude 1+
√
5

2 from our
considerations, could we get a better constant than 1√

5
? It certainly seems plausible; perhaps we could

create a decreasing sequence of constants as we continually restrict the allowable choices for α.

This decreasing sequence of best possible constants forms the beginning of the Markoff spectrum. In
1880, A.Markoff discovered a stunning result showing a deep connection between these constants and
integer solutions to the diophantine equation

x2 + y2 + z2 = 3xyz.
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Roughly speaking, we wish to find small constants c such that∣∣∣∣α− p

q

∣∣∣∣ ≤ c

q2

has infinitely many rational solutions p
q . It is clear to see that the previous inequality is equivalent to

q∥αq∥ ≤ c.

It thus follows that the optimal constant for a particular α given by

µ(α) = lim inf
q→∞

q∥αq∥.

The value µ(α) is often referred to as the Markoff constant for α. We begin with an exploration of the
quantity µ(α).

Lemma 6.1. Let α = [a0, a1, a2, . . . ] be an irrational number, and pN

qN
= [a0, a1, . . . , aN ] denote its Nth

convergent. Then for all N > 0,
qN−1

qN
= [0, aN , aN−1, . . . , a1].

Proof. Yet another proof by induction. We know that

q0 = 1 and q1 = a1,

so the base case is true. Using Corollary 4.2,

qN
qN+1

=
1

aN + qN−1
qN

,

and the conclusion follows.

Lemma 6.2. Let α = [a0, a1, a2 . . . ] be an irrational number and pN

qN
be its Nth convergent. Then for all

N¿0,

qN∥αqN∥ =
(
[aN+1, aN+2, aN+3 . . . ] + [0, aN , aN−1, . . . , a1]

)−1
.

Proof. By Lemma 5.5, we deduce that

qN∥αqN∥ =
qN

αN+1qN + qN−1

=
1

αN+1 +
qN−1

qN

=
(
[aN+1, aN+2, aN+3 . . . ] + [0, aN , aN−1, . . . , a1]

)−1
,

where the last line follows from the previous lemma and the definition of αN+1.

Lemma 6.3. For an irrational number α = [a0, a1, a2, . . . ],

µ(α) = lim inf
N→∞

(
[aN+1, aN+2, aN+3 . . . ] + [0, aN , aN−1, . . . , a1]

)−1
.

Proof. We first note that Theorem 3.7 implies Theorem 5.13. Since we know that the best possible
constant is the one in Theorem 3.7, by the definition of µ(α), µ(α) ≤ 1√

5
, and the conclusion follows.
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Title - Adding fractions wrongly, an introduction to Diophantine Approximation

What happens if we define the addition of fractions in the ’wrong’ way: a/b+ c/d = a+ c/b+ d?
Surprisingly, this ’wrong’ definition opens the door to a beautiful part of number theory: Diophantine
Approximation, the study of how well the rationals can approximate real numbers. In this talk, we will
uncover the structure of these ’wrongly added’ fractions, and use it to prove a few of the fundamental
results in the field, namely Dirichlet’s Theorem, which guarantees infinitely many ’good’ rational
approximations, and Hurwitz’s Theorem, which gives us the best possible bound for these
approximations. We will explore how Diophantine Approximation connects to transcendental number
theory, proving Liouville’s Theorem and constructing explicit examples of transcendental numbers,
thereby establishing their existence. The talk will be accessible to all undergraduates.
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