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1 Introduction

In this article, we aim to provide the reader with a taste of Diophantine approximation, closely
following the book Exploring the Number Jungle by Edward B. Burger, and some occasional references
to the classical book An Introduction to the Theory of Numbers by Hardy and WrightE

Firstly, what is Diophantine Approximation, and why do we even bother with it? ....

2 Farey Sequences

2.1 Properties of the Farey Sequences

Here, we uncover the arithmetic structure of the Farey Sequences. Most of the observations here were
made by J.Farey in 1816. However, he gave no proof. [HW09, p.44] Cauchy, however, immediately
provided the proofs after seeing Farey’s statement.

Definition 2.1. A Farey Sequence of order N is the ordered list of all reduced fractions between 0 and
1 having denominators not exceeding N. We denote this sequence by §,

So for example,
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We take a slight detour, first considering the size of §, before considering its arithmetical structure.

Let #(Fn) denote the number of elements in §y. For example,

#(F1) = 2, #(F2) = 3,#(F3) = 5, #(F4) = 7 and so on. Looking at the first few values for #(Fn), one
might conjecture that #(Fn) is always prime. But this is in fact not true. To disprove this conjecture,
we first need a few lemmas.

Lemma 2.2. For a positive integer N > 2, the number of elements in §n having denominator N is
equal to p(N), where p(N) is the Euler totient function.

LA slight disclaimer: since the book is more of an exercise book, most of the proofs, unless stated otherwise have been
done by me along with some help from my supervisor. Hence, the proofs may not be the most elegant, and all errors are
most certainly mine.



Proof. By Definition the elements with the denominator N are precisely the fractions that have
numerators which are coprime to N, and the number of them is given by (V). O

With this, we can derive a formula for #(Fn).

Proposition 2.3. For any N > 2,
N
#EN) =14 > p(m).

m=1

Proof. The statement is true for N = 1. Assuming that it is true for N = n, the number of elements
that are in §,,+1 is the sum of the number of elements in §, and the new elements with numerator
coprime to n 4+ 1 and denominator n + 1, of which there are ¢(n + 1) of them. O

Using this formula, we check that #(F10) = 33, which disproves our conjecture.

Remark. While there does not exist a simple, closed formula for the formula in the previous
proposition, the simple function f(NN) = %N 2 approximates the formula surprisingly well for
sufficiently large N. For example, #(F10) = 33 while 3% ~ 30.4.

We now go back to uncovering the underlying arithmetical structure of the Farey Sequences. From here
onwards, we shall assume that all rationals discussed are positive, along with the natural numbers

p.q,7, 8, a,b, 2,y
Lemma 2.4. Let g < T be two rational numbers satisfying ps — rq = —1. Then for all positive integers

A and p, we have
p Xt T
q~ AN+ ps T s

Proof. We have that the statement is equivalent to:

P Ap + pr < r
g~ Ag+pus " s
A

e P _dekpr v
qg S A+us s
ps —rq < Aps + prs — Arq — urs <0

qs Ags + ps?

-1 —-A

= —<— <
qs — Ags+ ps?
-1 < -1
qgs ~ qs+5s2 77

which is true, since all A, u, q, s are positive. O

It what follows, it may be useful to note that the hypothesis in the previous Lemma could be written as

det (p T) =1
q s

be two rational numbers satisfying ps — rq = —1. Suppose that § is a rational
<

Lemma 2.5. Let
number satisfying

2B 1B
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. Then there exists nonnegative integers A\ and p such that

r
s

a=Ap+pur and b= MAg+ ps.

2The reader might recognise this particular function to be the average order of the Euler totient function.



Proof. We solve directly for A and p. We have that:

a = Ap+ pr
b= Aq+ ps,

Multiplying the first equation by s, and the second equation by 7, then solving for A:

as = Aps + urs br = Ags + urs
as — br = Aps — \qr
as —br

 ps—qr’

Now since ps — rq = —1, it follows that A = br — as, and similarly, solving for u we get pu = bp — aq.
Since all a, b, r, s are natural numbers, we are done. O]

Combining these two lemmas, we have the following.

Theorem 2.6. Let % < % be two rational numbers satisfying ps — rq = —1. Then a rational number ¢

is an element of the interval [g, L] if and only if a = Xp+pr  and b= Ag+ ps for some
non-negative integers \ and p.

Proof. Follows from Lemma [2.4] and Lemma 2.5 O

Before proceeding further, we prove the following propositions, whose results come in handy when
proving further results.

Proposition 2.7. Suppose that ps — rq = —1. If gcd(\, ) = 1, all fractions of the form

H Ap+upr

K Mg+ pus
for non-negative integers \ and p are in lowest terms.
Proof. We first note that ged(p,¢) = 1, and ged(r, s) = 1. Now,
H=Xp+pur and K = Ag+ pus.
After multiplying the first equation by ¢ and the second equation by p, we get

Hq = \pq + prq
Kp = A\pg + psp.

Subtracting the first equation from the second and using the condition ps —rq = —1,
Hq— Kp=p.

Similarly, we can obtain :
Hs— Kr=—-\

Since ged (A, 1) = 1, the only common divisor between K and H is 1, from which the claim follows. [
Proposition 2.8. No two consecutive elements in §, can have the same denominator for n > 1.

Proof. If ¢ > 1 and g succeeds g in §,, then we have that p+ 1 <r <g¢. But

¢ q-—1 q q

1 r
p<L<]i<

So ﬁ comes in between g and g, which is a contradiction. O



Proposition 2.9. If { and § are two consecutive fractions in §n, with b,d > 2, then

1
bd =~ N’
Proof. We note that b+ d > N, otherwise the two fractions cannot possibly be consecutive. WLOG, let
b>d, so
bd>2b>b+4+d> N.

We are now ready to prove the key properties of the Farey Sequences.

Theorem 2.10. Let % < % be any two consecutive fractions in §n. Then

det <p r) =-1
q s

Proof. We proceed by induction on n. The base case when n = 1 is true. Assume that the statement
holds for §,_1. Let g < E be two consecutive elements in §,_1. Now suppose that % separates % and g

in §,. Using Theorem 2.3, we infer that

a  Ap+pur

b Mg+ ps
for some non-negative integer A and p. We now claim that A =1 and g =1, and that b = ¢ + s.
Suppose not, since ¢ is in §, but not in §,_1, we must have b = N. So N = Aq + us, for some
A, 1 (either one) > 2. Define a new fraction % with @ = p+ s and b = ¢+ s. Again by Theorem 2.3 this
fraction is in between g < . But since ¢ + s < A\g + ps < N, this fraction will be in §,_1, contradicting
our assumption that % and % are consecutive elements in §,,_1. O

Theorem 2.11. The fractions that belong to §, but not §,_1 are mediants of two consecutive elements

of §n-

Proof. Let § be the fraction in question. Let g,g be such that % < § < L are consecutive elements in
8n- Since ¢ is consecutive to both % and T in §,, we have that n = b # 7, s, and since % and T are
consecutive in §,, 1, (§ is not an element of §,, 1) by Proposition we have that b # r # s. Also,
from Theorem @, we have that ¢ is of the form

a  Ap+pus

b Ag+us

A similar argument to the proof of Theorem [2.10] shows that we must have A = = 1, and we are
done. O

Remark. The converse of both previous theorems are not true. For Theorem [2.10] consider the
consecutive elements of §s : %, 2 1 We have that

512"
1 1
det <3 2) = -1,
but they are not consecutive elements.
For Theorem consider the consecutive elements inJs : %, % We have that 1=2 is not in F4.

3+2=5

With striking similarity of the proof strategies for the previous two theorems, one might guess that
Theorem and Theorem are equivalent. Indeed, they are. (I omit the proof for now, and will
decide whether to add it in later, but it is in Hardy and Wright)



2.2 Ford Circles

We take a slight detour from analysing the elements of the Farey Sequences in an arithmetic sense, and
take a more geometrical approach, namely via Ford Circles. They are a different representation of the
Farey Sequences and can give some insight to how well we can approximate arbitrary real numbers.

Definition 2.12. For a rational number %, we define the circle C (%) in the complex plane having

1

centre at % + ﬁi and radius #. Such circles are called Ford Circles.

We present a sketch of the Ford Circles for the rationals in each set: §1, 52,33, 54, 55 below:
(Figure out how to insert someday)

We see that the Ford Circles pack together peculiarly; one might make a few observations about them,
and we provide proofs of those observations.

Theorem 2.13. The intersection of the interiors of any two distinct Ford Circles is empty.

Proof. Tt suffices to show that the distance between any two circles is greater than the sum of their
radii. WLOG: we assume that % < =. We aim to show that

Which is equivalent to

D T 1 1 5 1 1 4
vg__ I PN _
(q s) (2q2 252) *(2q2+252)
P To 1

=m0 >
( . A 7

— (ps —rq)? > 1,

and this is true since all p, g, r, s are non-negative integers. O

Theorem 2.14. Two Ford Circles, C(%) and C(%), are tangent if and only if% and % are adjacent
elements in §, for some N.

Proof. We start with right implies left:

Suppose 2 and L are consecutive elements in §,,, then we have that ps — r¢ = —1, and taking this into

Theorem m we are done.
Left implies right:

Since the circles are tangent to each other, by the previous theorem we deduce that ps — rq = —1. Let
N = max {q, s}. It follows that both fractions are elements of §n. Suppose £ < £ are not adjacent. So
there exists a fraction, say, ¢, also an element of §x seperating them. From Theorem we have

a __ Ap+ur

b A+ ps’
for some nonnegative integers A, p. Since N = maz {q, s}, we consider two cases for b.
1. b=N

WLOG, let N = s = b, it follows that we must have y = 0. So ¢ = i—f; = g, which is a
contradiction.

2. b< N

Again, WLOG, suppose that N = s. Just as before, we must have u = 0. Notice that since 7 is
defined, we cannot never have O\ = p = 0. A similar argument to the previous case completes the
proof.

O



Theorem 2.15. Suppose that the Ford Circles C’(%) and C(%) are tangent to each other. Let C be the

. . r . _ +r
circle that is tangent to C(2) and C(%) and the real azis. Then C = C(%]).

Proof. O

In fact, we can use the Ford Circles to find excellent rational approximations to e € R. One way we can
do this is by starting with the complex plane together with all the Ford Circles tangent to the real axis.
Then we draw a ray perpendicular to the real axis starting from « approaching to +o0o. This ray w ill
intersect an infinite sequence of shrinking Ford Circles. The points of tangency of those circles to the
x-axis form a sequence of rational numbers approaching «, all having relatively small height EL The
upper bound of the error will be ﬁ, the radius of the Ford Circles.

With that in mind, we proceed to the main results in Diophantine Approximation.

3 Discoveries of Dirichlet and Hurwitz

3.1 Dirichlet’s Theorem

Before proving Dirichlet’s Theorem, one of the fundamental theorems in Diophantine approximation, we
will need the Pigeonhole Principle.

Theorem 3.1 (Pigeonhole Principle). Suppose we have N boxzes and N + 1 objects. If we were to place
the objects in the boxes, then no matter how we placed the objects, there must exist a box containing
more than one object.

Proof. We present two proofs, the first by contradiction and the second by induction.

1. Proof by contradiction: Suppose that there does not exist a box that contains more than one
object. Then we have a total of N boxes, each containing only one object, adding up to N objects,
which contradicts the fact that we have N + 1 objects.

2. Proof by induction: The base case is trivial, when we have two objects but only one box, we must
have the box contains more than one object. Now we suppose that the result is true for N + 1,
objects and N boxes, when we have N + 2 objects and IV + 1 boxes, we can assign one and only
one object to a single box and we are back in the N + 1 objects case. Hence, we are done.

O

As a minor digression, we give an application of Theorem demonstrating the usefulness of this
intuitively obvious theorem.

Theorem 3.2. Given any set of N positive integers, there exists a subset whose sum is divisible by N.

Proof. Let the set of N integers be denoted by {a1,as,...,ax}. If any one of the integers is a multiple
of N, then we are done. So suppose not. Define the sum

51:a1
So = ay + as

Si=artar+-+a

Sy =a1+as+---+ap.

Again, if any one of the S; is a multiple of N, then we are done. So suppose that none of the S; is a
multiple of N. Then S; =1,2,...,N —1 (mod N). Now note that we have N sums but only N — 1

3The height of an integer is defined by h(%) = max{|p|, |g|}. We can think of this "height’ to be a measure of complexity.



residues modulo N, so by Theorem there must exist 4.j such that S; =.5; (mod N). WLOG, let
i > j, we take the subset formed by the elements of S; — S; : {a;,aj41,...,a;} and we are done. O

We now prove the fundamental result of Dirichlet from 1812.

Theorem 3.3 (Dirichlet, 1812). Let a be a real number and Q be a positive integer. Then there exists
a rational number % such that 0 < ¢ < Q, and

P 1
q'S q(Q+1)

o —

Proof. We note that the inequality is equivalent to

1
aqg—p| < ———. 1
a0 -1l < 5 (1)
Hence, now our objective is to find integers p, ¢ such that they satisfy . We partition the interval
[0,1] into @ + 1 equal intervals. Write i = [iar] + {ioz}E| where i € {0,1,...,Q}. Consider the values
{ia}, and the value 1. In total we have @ + 2 values in the interval [0,1], but only @ + 1 partitions. So
by Theorem there exist two values amongst the set containing {ia} and 1 that are in the same

interval. We break this down into two cases. The first case is where both values are from the set of
{ia.}. Then WLOG, suppose 0 < j < i < @, it follows that

1
(Q@+1)

Using the definition of ic, we are done. Now suppose that we have the two values lying in the same
interval being 1 and {ia} for some i. Note that we cannot have ¢ = 0. So

[{ia} = {ja}| <

1
wt — 1] < .
Hence
lia — ia] — 1| < ! ,
(@+1)
which concludes the proof. [

Remark. For certain o’s, Theorem cannot be improved. For example, for a = ¢ for some integers

a,b, we can take p = a@ _ 1y (1) and both bounds in Theorem will be sharp.

b Q41

We now deduce an immediate consequence of Dirichlet’s Theorem.

Theorem 3.4. A real number « is irrational if and only if there exist infinitely many rational numbers
g such that

Proof. [HW09, p.201-202] We start with the ’only if” direction, suppose that there are only finitely
many rationals, say n of them, indexed by % that satisfy the statement. Then since « is irrational, we
have that o — f;—:' # 0 for each i. So there exists a natural number @ such that

L
Q+1

By Theorem for this value of @, there exists another rational, £ with

ozf& >

qi

e a
q| q@+1) T Q+1

4We use {x} to denote the fractional part of x, and is in the range [0,1)




For this rational %, we also have

1
Oé—B <7

q q
Hence, we found another rational not in our list of % that satisfies the statement, a contradiction.

For the ’if’ direction, we prove the contrapositive: If « is rational, then there exists only finitely many

rationals g with
< 1
q| ¢*

WLOG, let « € [0, 1],. Since if & > 1, we can always write |a] =k = %, and use p = p + kq instead of
p in the inequality. Write o = ¢, then

‘ p
e

a 1
a pl_1
b q‘ ¢
1 _fag—pb| 1
ab —| bg ¢
where the second inequality holds since all a, b, p, ¢ are integers. It follows that we must have ¢ < b, and
there are only finitely many rationals % that satisfy the statement. O

Note that heuristically, this gives us a characterisation of irrationality: If we can approximate a number
too well with rationals, then it is irrational. We now provide a different proof of Dirichlet’s Theorem,
using the properties of the Farey fractions we proved previously.

Lemma 3.5. If 7 and § are adjacent elements in §q, then

1
S CESY

1
S CE)

gia—f—c
b b+d

Eia—i—c
d b+d

and

Proof. The proof is just a matter of symbol pushing.

g_a—I—c < 1
b b+d|~ b(Q+1)
ab+ ad — ab — be < 1
b(b+d) QR +1)
1 1
<
b+d]~ (Q+1)

which is true, since ¢ and § are adjacent elements in §¢q(If not, a quick check shows that they cannot
be adjacent elements). The other inequality can be proven similarly. O

‘

We use this lemma to prove Dirichlet’s Theorem.

Alternate proof to Theorem [3.3 We fix a positive integer Q. WLOG, suppose that o € [0,1]. Let

7 <a < g, where ¢, § are consecutive elements of §g. Suppose a < ‘;Is It follows that

o1
THQ+1)

gia—i—c
b b+d

a
‘a <

b

The a < ‘gié case can be proven similarly; this concludes the proof. For the infiniteness of rationals
satisfying the inequality given that « is irrational, note that

1 1
« b < = < 0
Therefore, as we consider Farey Sequences of higher order, we cannot have the same fraction being a
good approximation to «, since that would imply that § = «, which is a contradiction. So it follows
that we can repeat the above argument infinitely many times. Hence, we conclude that there are
infinitely many fractions that satisfy the theorem. O

a C

b d




One might ask: is the inequality in Theorem the best bound we could do? That is, could we replace
the upper bound with a smaller quantity? Could we increase the exponent of q?EI What about adding a
constant in front of ¢?? In 1891, Hurwitz discovered the best possible constant.

3.2 Hurwitz’s Theorem
We first start with a lemma.

Lemma 3.6. If z and y are positive integers, then at most one of the following inequalities can hold:

1>1<1+1) 1>1<1+1>
zy — VB \2?  y?) xl@ty) T VB2 (z4y)?)
Proof. Suppose that both inequalities hold. Then we have both

Vory > y* +2°,  (2)(@+y)VE > (z+y)’ + 2>

So
ayV5+ (2)(x +y)V5 >y  + 2 + (2 +y)? +2?
0> 2y% + 2zy — 2xy\/5 + 322 — V522
0> 4y? — day(vV5 — 1) + (6 — 2v/5)a?
0> (2y — (V5 - 1)2)%,
which is false since z,y are positive integers. O

Theorem 3.7 (Hurwitz, 1891). Let « be an irrational number. Then there exists infinitely many
rational numbers % such that

P 1
a—=| < —.
’ NG

q
Proof. WLOG, suppose « € (0,1). Fix N, where N is some positive integer. Choose two consecutive

elements of §n, say § and § with 7 < a < §. What is N7 Now we show that one of ¢, ¢, Zig satisfies
a+tc

b+d”

the claim. Suppose not. Let a < Then we have the following three inequalities:

a-+c 1
LIS e — 2
brd |7 Vbt a2 ®
a 1
— 2> 3
c 1
Z _—al > .
i~ 7 Vs W

After removing the absolute signs, by inequality and :

1 1
V5(b+ d)? MV

a+c_g
b+d b

>

SO R -
B)b+d) — 5\ b+d?2 2]’

But also, using inequality and ,

5We will answer this in Chapter xxx

10



So we have a contradiction to Lemma Now we show that there exists infinitely many rationals that
satisfy this inequality. Note that

ac_1<1
TSy T d T SN

a
<

where N is the order of the Farey Sequence. To prove that there are infinitely many rationals that
satisfy the inequality, we use the same approach as in the alternate proof of Dirichlet’s Theorem. The

proof is similar for the case o > Zi;, and this concludes the proof. O

Next, we will prove that the constant v/5 is the best possible choice in that the result would no longer
hold if we choose a constant larger than V5. We start with a lemma.

Lemma 3.8.

(a) Show that for any rational ¢, it follows that

a_
p ¢

1
Z—(p':bZ‘aQ—ab—bQ‘.

(b) Show that a? — ab — b* cannot equal zero (recall that b # 0.)

(¢) Deduce that
1

S5 >
I

(d) If for some positive real number m, |% — g0| < ﬁ, then |% — ¢| < # + /5.

Proof.

(a) Expanding the expression:

1

2 Z—w‘z\Q—abw—abwwa\

b7 b2

:bj’aQ—ab—bQ‘

b) Suppose that ¢ are in lowest terms. Then ged(a,b) = 1. If a? — ab — b? = 0, then
b

2
a
—=1 .
b +a

Since 1 + a is an integer, we have a | b, a contradiction.
(¢) Follows from (b).

(d) Using the triangle inequality,

g =|s-ete-T<|t-9|+lo-7
1
< —
,mw+¢5

We now show that the constant in Hurwitz’s Theorem is the best we can do.

Theorem 3.9. The constant \/5 in Hurwitz’s Theorem is best possible. That is, Theorem does not
hold if \/5 is replaced by a larger value

11



Proof. Let p = #, and suppose that for this ¢, there exists a real positive number m, such that

’ a; < 1
4 bi mbiQ ’
for infinitely many distinct fractions 3=. It follows that b; — oo as i — oo. Suppose not, then we have

that b; is bounded. Since there are mﬁmtely many fractions that satisfy the inequality, a,; is unbounded,
which will give us a contradiction. From Lemma u 8 for any §* we have

a e o1
TR
and
a;
bT’ 90‘ mb;> + V5.
So we have ) )
a; a
= — =P +5).
mb;> ~ |b 7| b Lp’ ( ) ( b;° )
It follows that
5 1
1<V, L
m  m2b,
As i — 00, b; — 00, SO
5
1< i, and m < V5.
m
This concludes the proof. O

The proof of Theorem reveals that we cannot do much better than the constant \/5, since the
smaller upper bound will no longer hold for o = 1+27\/3 However, there are still some questions we can
ask: If we exclude 1+2‘/5, can we get a better constant? Also, how does one even compute the rational

approximates for any real number a? We answer the latter question in the next section of this article
via continued fractions. The former question will be dealt with in Chapter [6]

4 The Theory of Continued Fractions

We know that by Dirichlet’s Theorem, there exists a rational number f}l such that 1 < ¢ < @ and

p' o1

o — = _—

“q(@Q+1)

We now aim to compute the fraction %, by developing an algorithm.

Lemma 4.1. Let xg, 21,22, .. be real numbers such that x,, # 0 for n > 0. If we define the numbers p,
and q, by

(o) (o) (7 o) (7 0= G i) ®

then

T+ ————

12



Proof. We first check that p,, and g, is in fact, well defined. By definition,

2o 1\ (a1 1\ (z2 1 Tn 1\ _ (Pn DPn-
1 0 1 0 1 0)"7°\1 0) \gn Gn-1/)’

Now note that we can also define p,, and ¢, with the expression:

xo 1 T 1 i) 1 Tn41 1 — Pn+1 Pn
1 0 1 0 1 0/ 1 0 dn+1  qn '

Using the first expression, we can write

n  Pn—1 Tpy1 1 _ (Pn+1 Pn
dn dn—1 1 0 dn+1 dn ’

where the second column entries of the product on the left is
<o Dn
e Qn)

We now proceed to prove the main result by induction. When n =1,

xo 1\ [(x1 1\ _ (mor1+1 =\ _ (P1 Do
1 0/)\1 0) 1 1) \&a @)’

So the p),s and ¢}, s are in fact well defined.

Since
D1 I wory +1
— =29 - = )
q1 Z1 Z1
the statement is true for n = 1.
Suppose that the statement is true for real numbers yo, y1, ..., yn—1. In other words, if
yo 1\ (1 1 Yn—1 1\ _ (Pho1 Phs
1 o\t o/ U1 o0 Gt -2/’
then
/
_ 1
p:l L = Yo +
qn—l + 1
Y1 . 1
-
Yn—1
Suppose we have the sequence of n — 1 real numbers g, z1,...,T,, and we define p, and g, by:

G- (-G ) :

Tpn—1Tn+1
Tn

xg 1\ (z; 1 %ﬁ“ 1\ (Ph1 Pas (7)
1 0/\1 o) 1 0] \dn-1 2/’

Using equations [6] and [7]
! / -1 =1 fan qxn+1
Pn_1 Pn—2 — Pn  DPn—1 Tn 1 Tn—1 1 . 1
Tn-1 Gn—2 G Gu-1)\ 1 0 1 0 1 0
I
%Z —ZTndn '

Now set Yo = o, Y1 = X1y - Yn—1 = . Then by the induction hypothesis, we have

13



Hence,

Pho1 = %a and Gp—1 = C%L
So finally,
bn Pr_1
qn B q%71
1
= X0 + 1
Tt TpTn_1+ 1
T
1
= X0 + 1 5
T+ N 1
L4 .
Tp—1+—
n
which concludes the proof.
For ease of notation, we write
[xo,Z1,. .., ZN]
to denote the expression
1
To + 1
T+ 1
v 1
- e

The next corollary gives a recurrence relation that can be used to easily generate the p,’s and g¢,’s.
Corollary 4.2. Given the notation in Lemma[{.1}, it follows that
PN+1 = TN41PN + PN-1 and  gN4+1 = Tp+19N T qN-1

for all N > 1.

Proof. The proof is again by induction. Setting n =1, in Lemma [4.1

P2 p1\ _ (o 1Y\ (w1 1\ faz 1

Q2 q 1 0 1 0 1 0
_ (mox1T2 + T2+ 20 ToT1 + 1
n x1wo + 1 1

Hence
P2 = ToT1T2 + T2 + To = Z2p1 + Do, and g2 = z122 + 1 = 22q1 + qo.

Suppose that the statement holds for N = n, then again by Lemma [4.1]
Pnt1 Pn\ _ (To 1Y (1 1 Tptr 1
dn+1  Gn 10 1 0/ 1 0
_ <pn pn—l) <$n+1 1)
qn  Qdn-1 1 0

— PnTn41 +pn71 Pn
dnTn+1 + dn—1 dn

SO P+l = PnTnt1 + Pn-1, and ¢n+1 = @uTpt1 + gn—1. This concludes the proof.
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We now see that the p/ s and ¢, s are related in a simple way.

Corollary 4.3. For all N > 1, pnqN—-1 — PN—19N = (—1)N+1.

Proof. Take determinants on both sides in Lemma O

PN

ov can be expressed just in terms of zy and the ¢,s.

The quantities
Lemma 4.4. Given the notation in Lemma[{.], for any integer N > 0,

N _
PN (_1)n 1

— =+ .
N el qnQdn—1

Proof. Yet again another proof by induction. When N = 1, by Lemma [£]]

Suppose that the statement holds for N-1. Using Corollary

PN _ (=pN+! PNt

gN gNgN -1 gN-1

Applying the inductive hypothesis,

PN _ (_1)N+1 + PN-1
qN gNgN-1 gN—-1

PR G R

dndn—1 gNgN -1

O

If we further assume that the real numbers x,, are positive, then we see an interesting growth pattern in
the sequence {£=}.

Corollary 4.5. If x; > 0 for all i > 0, then

Po P2 _Pwo_ o _Puii_ D5 _DP3_DP1L
qo q2 q2n g2m+1 g5 g3 q1

Remark. This inequality encodes three different conclusions: the even-indexed terms are strictly
decreasing, the odd-indexed terms are strictly increasing, and every even-indexed term is less than every
odd-indexed term.

Proof. [HW09, p.168-169] To prove that the even-indexed terms are strictly increasing, using our
prveious lemma, we consider the difference

2n—+42 -1 2n 1
—1)" —_1)»
R VRN (PR A Y PR
qon+2 qon el dndn—1 el dndn—1
1 1
= — +
q2n+192n q2n+192n+2
> 0,

15



where the last inequality follows from the fact that z; > 0 for all i. The proof that the odd-indexed
terms are strictly decreasing is similar, again we consider

2n+1 1 2n—1 -1
- —1)" —1)"
Dont1  Pon-1 _ :COJrz( ) _ x0+z( )
q2n+1 qon—1 n—1 ndn—1 n—1 dndn—1
1 1
q2n+192n q2nq2n—1

<0,

and we are done. Now we prove that all even-indexed terms are less than every odd-indexed term.

Suppose that we have an arbitrary even-indexed term, ‘; — and another arbitrary odd-indexed term,
m

DP2n+41

q2n+1

. We consider three different cases:
1. If n = m, we can directly take the difference and use the previous lemma, which gives us

Pont1l  P2n _ 1

Y

qon+1 qon don+192n
which is positive, hence 222+ > P2n
q2n+1 q2n

2. If n < m, since the odd-indexed terms are strictly decreasing, we have

Pom+1 Pon > Pont1 P2n < 0.
q2m+1 q2n q2n+1 q2n

3. If n > m, then since the even-indexed terms are strictly increasing,

Pom41 P2n > Pom41 P2m > 0.
q2m+1 q2n q2m+1 q2m

This concludes the proof.

We now restrict the s to strictly be integers.

Theorem 4.6. If ag,aq, ... are integers with a, > 0 for all n > 0, then

A}ij)noo[aOaala"'aaN] =«

for some irrational oo. Moreoever, for all n > 0,

1
qndn+1 .

a—& <
dn

Proof. |Lon87) p.221-222] The first statement is equivalent to showing that

&—wy, as N — oo.

dn
From Corollary we know that the even indexed terms are increasing and bounded above, and that
the odd-indexed terms are decreasing and bounded below. Hence, it follows that both sequences

converge to a limit. Let

lim 27— qim 2o

N—oo qQTL N—oo q2n+1
It remains to show that S = T. Observe that

1

Pan+1 Pon
b
42nq2n+1

q2n+1 qon

taking limits on both sides as N — oo, we can conclude that

S = lim 2% = ppm Prt 7

N—o00 QQn N—o00 q2n+1

)

16



as required, since the ¢/,s are increasing. We now check that « satisfies the inequality. Indeed, since « is
the common limit of both the odd and even-indexed sequences, o must be between any n and n + 1.
Hence,

Pn
o — —
an

We now use the inequality to show that given that the inequality holds for all n, o must be irrational.
Suppose not, write o = ¢. The inequality can now be rewritten as

o |Pntr_Pnf_ 1

0< = .
dndn+1

An+1 dn

1
dndn+1

a  Pn

b g

b
|QQn _pnb| < s
qn+1

which we claim can only hold for finitely many n. In fact, since the ¢/, s are increasing, there exists an
integer m such that gy > b for all m > N. Therefore, |ag, — p,b| < 1, and since all a,b, p,, ¢, are

integers, it will lead to a contradiction to Corollary O
The expression [ag, a1, .. .| from Theorem is called the simple continued fraction expression of .

The integer a,, is called the nth partial quotient of «, the rational number % is the nth convergent of .

We now describe an algorithm for determining the continued fraction expansion for any given real a.
Let « be a real number. We write |a] to denote the integer part of @ and {a} to denote the fractional
part of a.

Suppose we are given an « and wish to find its continued fraction expansion. Let’s consider the
following procedure: Define ag = a and let ag = |a]. If ag ¢ Z, then let a1 = 1/(cg — ag). In general, if
ay, has been defined, then let a,, = |ay, ], and if a,, ¢ Z, then let a1 = 1/(an — ay).

Proposition 4.7. Let the al,s be as defined in the previous algorithm.
(a) Show that a = [ag, a1, ...] and that a, € Z and for all n > 0,a, > 0.
(b) Show that p,, and q, are integers and that q1,qa, ... is an increasing sequence of positive integers.

Also show that the integers p, and g, are relatively prime.

Proof. (a) By Theorem we know that the limit exists, say the simple continued fraction
expansion converges to 3. Now we have to show that in fact a = .

lo— Bl <|la—Prly|g-Pn
n n
o]y
Gn| 2

by Theorem So it remains to show that for every ¢ > 0, there exists an N > 0 such that

3

27

Pn
o — —

an

for all n > N. Indeed, we start by writing « in the simple continued fraction expansion form
(which could be infinite). We then directly simplify the expression. Therefore,

Qp — Gp

o laiaio1, . an]lai aio, o)

oo Pn
II

dn

Now, since each term on the denominator is greater than 1 (by definition of a,,), and that
|an, — ap| < 1, for small € > 0, we choose N such that

<

aN —an
HN

i=1 [ai,ai—1,...,an][ai,ai—1,...on]

DO ™

17



So, for all n > N, we have
€

2’

pn
o — —

an

as required.

To show that for all n > 0, a,, > 0, note that «,, — a,, > 0 for all n > 0, from which the claim
follows.

(b) Since all a/,s are integers by construction, inductively, using Corollary it follows that p,, and
qn are integers. To show that ¢, ¢o, ... is an increasing sequence of positive integers, we note that
go=1>0, and ¢ = a; > 0. So again by Corollary the sequence of ¢/, s is increasing.

The result that the integers p, and ¢, are relatively prime follows from Corollary [£.3]

We now have a new criterion for rationality.

Theorem 4.8. The real number « is rational if and only if the process described above terminates in
finitely many steps.

Proof. |01d63, p 14] We start with the only if direction Let o = ¢, with b > 0. By the algorithm

3—a—ao+f soa—ba0+— We deduce that —- EZ Nowwedeﬁne ——b So
b 1
az&lz LOé1J+{041}=a1+072.
Multiplying by b1,
b
b=biay + —.
(€5
Inductively, we get the system of equations:
b=aiby + by
bl = a2b2 + b3

Notice that b > by > b > -+ > 0, since all of the b}s are positive. Therefore, there must exist some N
with byyo = 0. If byyo = 0, then b; = a;41b;41. Since bé—:‘-l = Q41 = Qi+1, it follows that a; 11 € Z and
the algorithm terminates.

For the if direction, we just have to slowly expand the fraction from the bottom, from which the claim
follows. O

We now answer the question proposed in the previous chapter: how does one compute the fractions that
approximate any real number a, and how close of an approximation it is?

Theorem 4.9. Suppose that pl Lz " are the convergents associated with the irrational number «. Let
Q > 1 be an integer. If n is the mdem satisfying qn < Q < Gn1, then

_t
~(Q+1)gn

Pn
a_i

Proof. Since Q, gy, gn+1 are all integers, if Q < 41, then @ + 1 < g,,+1. Combining this with
Theorem the claim follows. O

Thus, we see that the convergents are rational numbers that satisfy Dirichlet’s Theorem. In the next
chapter, we will show that the convergents are, in some sense, the "best” rational approximation to a.

18



5 Enforcing the law of best approximates.

From Theorem we can deduce that the inequality is equivalent to

1
ag—pl < ——.
lag p\_Q+1

Therefore, we see that the integer p is easily determined by g: p is the nearest integer to cg. Thus, we
define a new function to simplify our notation.

Definition 5.1. We define the distance to the nearest integer function, || ||, by,

|z = min{|jx —n|: n € Z}.

Dirichlet’s Theorem can now be restated as: There exists an integer ¢ satisfying 1 < ¢ < @ such that
lagll < (@ + 1)~

In this section of the article, we ask: for an irrational number «, is there an algorithm to find the
complete list of increasing positive integers {qi, ¢, ...} such that

lagi]l > llagall > --- > llagn|| > ... (8)

We note that ||aq|| = ¢ ‘a — %’, so in fact we are not only asking to find rationals that approach a but

also to have the feature that their distances from « are getting smaller as compared to the size of their
denominators. In other words, we are finding the complete list of what are known as
the best approximates to a.

We will soon discover that the convergents given by the continued fraction expansion of « are, in fact, a
complete collection of best approximations to a. This result, due to Lagrange, is generally known as
The Law of Best Approzimates.

We begin by considering some basic properties of the ”distance to nearest integer function”.
Proposition 5.2. Let a,8 € R and n € Z. Prove that ||+ S| < |||l + 18] and ||na|| < |n|||a|]. The

first inequality is known as the triangle inequality.

Proof. Let k and k' denote the closest integer to o and 3 respectively. Then
el + 18Il =lo — k| + 8 — |

>la+ 8 —k—K|
>min{la + 5 —n|:ne€Z}
=llec+ 5.

Whereby the second inequality is the usual triangle inequality, and the third inequality holds because
we are considering the minimum distance across all possible n € Z.

To prove the second inequality, we use a similar idea. Let k be the closest integer to .. Then,

nflledl =|nl[k = of
=[nk — na|

>min{|na —m| : m € Z}.

We can write a formula for ||| in terms of the fractional part of a.

o = {{a}’ b=
1—{a}, if{a}>

N[—= N =

Before finding the best approximates, we introduce a few more important identities and definitions.
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Definition 5.3. Let a be an irrational number, with o = [ag, a1, ...]. We define the Nth complete
quotient by ay = [an,an41,---]-

Pn

o and complete quotients a,, it follows

Lemma 5.4. For an irrational number « having convergents
that

_ ON+1PN +PN-1

QON4+14N + gN-1

Proof. Note that the continued fraction of o can be rewritten as
a = lag,a1,...] = [ag,a1,...,an,any1]. Using Lemma we first define p;, ,; and ¢, ; by

ap 1\ fa1 1 any 1\ fayir 1Y _ Pni1 Py (9)
1 o/\1 o/ {1 o 1 0 vy v

Now we note that using our usual definition of p,, and g,, viz
ap 1\ (a1 1 any 1\ _ (pN pN-1
1 0/\1 0/ \1 0 aN  qn-1)’

<PN PN1> <aN+1 1>_<P/N+1 Pﬁv)
N gN-1 L0 dni1 v

= [ag,a1,...an,an+1] = «, multiplying out the previous matrix gives us

we rewrite equation [J]

/
PN41

Hence, after noting that =
aN+1

<04N+1PN +PN-1 pN) _ (p§v+1 p’zv)
aN+19N T gN-1 4gN Q§V+1 an)’

and the conclusion follows. O

Pn

o and complete quotients, a,, it follows

Lemma 5.5. For an irrational number « having convergents

that
(=~

AN+19N + qN-1

ag 1\ (a1 1 any 1\ fany1 1\ _ (anqppy +pyv-1 DN
1 0o)\1 o/ "1 0 1 0 ANt+1gN N1 N )’

Now taking determinants on both sides,

N — PN =

Proof. Write

(—1)N+1 = (ant+1pNn +PN-1)gn — (N+1gN + gN—1)DN,

simplifying and factorising the expression, we get

(=Y

gNO — PN = —————————————,
AN+14N T gN-1

and we are done. O

Lemma 5.6. Given the notation in Lemmal[5.5, for all N > 0,

1
|O“IN _pN| < —< |04(IN—1 _pN—1|~
qN +qn-1
Proof. From Lemma 5.5
1
logy — pn| =———
ON+1gN +gN-1
1
<—"
qN +qN-1
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For the other inequality, using Lemma [5.5| along with Lemma [5.4

ON+1PN +PN-1

\OéQNA —PN71| =|qN-1———————— — PN-1
AN+14N T qN-1
AN+1

AN+19N + gN-1
1

qN + gN-1

QAN41

1
>,
qN +gN-1

as required. O
Theorem 5.7. Let a be an irrational real number having convergents ]Z—". Then

lago — po| > |lagi —p1| > -+ > |agn —pn| > .. ..

Proof. This follows immediately from the previous lemma. O

We will now show that the denominators of the convergents satisfy the string of inequalities in .

Corollary 5.8. Given the notation in Theorem[5.7 it follows that
laqill > laga|l > - > flagn| > ...

Proof. We just have to show that p,, is in fact the closest integer to ag, for all n, Indeed, by
Theorem

‘q p | <
n O — Dn, -,
2
Since Q > 1. ThiS lnequahly hOldS fOI‘ all n, and we are dOIle. D

The denominators of the convergents satisfy the inequalities in , but do they form a complete list of
integers satisfying ? In other words, does there exist an integer g with ¢ny_1 < ¢ < qn such that

lagn—1[l > llegl] > flagn]|-

We will show that the answer to this question is no. Thus, the denominators of the convergents are
indeed a complete list of integers satisfying . We begin with a gentle lemma.

Lemma 5.9. Let a be an irrational number, and let p,q be two integers. There exists a unique integer

solution x,y to the system
PN PN-1) (TN _ [P
v an-1) \Y a)

det <PN pN1> = (—1)N+L,
N 4N-1

Proof. Note that

Now taking the inverse of the matrix above on both sides,

()=o) ()

Since py, gn, PN—1,qN—1 are all integers, the claim follows. O

We have finished all the buildup necessary to prove a theorem due to Lagrange from 1770, known as the
The Law of Best Approzimates.
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Theorem 5.10. Let o be an irrational real number, and let ZTI:;, denote the Nth convergent of «.
Suppose that g is a rational number satisfying 1 < q < qn and the ordered pair (p,q) # (PN-1,9N-1),
(p,q) # (pn,an). Then

1. |ago — po| > |agr —p1| > -+ > [agn — pu| > ...,

2. lag —p|l > lagn—1 — pn—1]-

Proof. 1. This is precisely Theorem
2. By Lemma we know that there exists integers x,y such that

PNT+pN_1y=p and gNT+ N1y =q.

We now consider three cases : zy < 0,2y > 0, and xzy = 0. We first note that the case zy > 0
immediately contradicts the initial assumption g < ¢n. Moving on, suppose xy = 0. It follows
that we must have y # 0. Suppose otherwise, then gy = ¢, and since z is an integer, we reach a
contradictionﬂ Now, if x = 0, then py_1y = p and gqn_1y = ¢. Note that y ## 1, otherwise we will
again produce a contradiction. Now consider

log — p| = |vgn -1y — P -1
= |y||0<qN,1 — pN—1]
> |agn-_1 — pPN—1]

since |y| > 1, as the claim requires. Now we consider the case where xy < 0. Again, we consider
the quantity

lag — p| = |a(zgn +yan—1) — 2PN — YpN-1]
= |z(agn — pN) + y(gn—1 — pN-1)|
< |z|lagy — pn| + |yllagy—1 — PN -1,

where the final inequality is derived from the triangle inequality. Since zy < 0, we note that x,y
have different parities. Now, combining this observation with Corollary [£.I} we deduce that we
must have equality in the triangle inequality, since both terms have the same parity. Now, finally,
since we have equality in the final line, the claim follows.

O

Remark. The second part of Lagrange’s Theorem can be interpreted as follows: there does not exist an
integer with lower complexity /height than gy, for any N, that approximates it better than gy —1. This
is precisely what we set out to prove in the first place.

It follows immediately from Theorem that the convergents also satisfy ’oz — g

wonder: Is the converse true? That is, if I have a rational 2 that satisfies the previous inequality, does
that imply that the rational is a convergent of a? Although the answer is no, if we tighten the upper
bound, the answer becomes yes. This is a result first discovered by Legendre.

< q%. One might

We start with a simple lemma.

Lemma 5.11. Let a and b be two distinct real numbers. Then
Loy 2
Proof. Consider the inequality (a — b)? > 0. O

Theorem 5.12. Let Z];—:i and fz% be consecutive convergents to cc. Then at least one of those rationals

will satisfy

1
WPl L

ql " 2¢%

6Note that = must be a positive integer as well, otherwise we cannot have 1 < gq.
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Proof. |Bor+14] (p.35) Suppose not, then we have the following inequalities

’a_%z 1
an |~ 2q%
‘ DN-1 1
a——|2> 5.
gN-1 2qN_1
Adding both inequalities, we get
_ 1 1 1
‘_%+‘JW122+2
anN qN-1 2\av  avaa
1
> —,
gNgN -1

by the previous lemma. Now, WLOG, suppose that N is even. Then, after carefully removing the
absolute values, we observe that

_ 1
PN-1 PN 1
gN -1 qnNn gN4GN -1

_ 1
PN-1 PN >
aqN -1 gN qNGN -1

PN—1GgN — PNgN—1 > 1

which is a contradiction to Corollary

Theorem 5.13 (Legendre). Suppose that p and q are relatively prime integers with ¢ > 0 and

Then % s a convergent of a.

Proof. Choose N such that gy < g < gn+1. Note that we have the following two inequalities to work
with
1
lagn —pn| < 5—.
2qn

Now, consider the quantity |pgy — png|. Using the triangle inequality again

1
lag — p| < % and

lpan — apw| < lan||lag — p| + |q||agy — p]
< |qllagq — p| + |g||ag — p|

<ql

1 +dl 1
2q 4 2q
=1

)

where the second inequality follows from our initial assumption that ¢y < ¢ and Theorem Since

P,q, PN, qn are all integers, the bound implies that pgny — gpny = 0, and so % = %’ as required.

O

6 Markoff’s Spectrum and numbers

We now return to the question at the end of Chapter |3 Suppose that we exclude % from our
considerations, could we get a better constant than %? It certainly seems plausible; perhaps we could
create a decreasing sequence of constants as we continually restrict the allowable choices for a.

This decreasing sequence of best possible constants forms the beginning of the Markoff spectrum. In
1880, A.Markoff discovered a stunning result showing a deep connection between these constants and
integer solutions to the diophantine equation

22 +y? + 2% = 3ayz.
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Roughly speaking, we wish to find small constants ¢ such that

a—p‘<

C
q 2

q

has infinitely many rational solutions %. It is clear to see that the previous inequality is equivalent to

qllag|l < c.
It thus follows that the optimal constant for a particular o given by

p(a) = liminf gflaq].

The value u(a) is often referred to as the Markoff constant for c. We begin with an exploration of the
quantity p(c).

Lemma 6.1. Let a = [ag, a1, ag,...] be an irrational number, and % = lag, a1,...,an]| denote its Nth
convergent. Then for all N > 0,
qN-—1
= [O,CLN, aAN—1y--- ,al].
aN

Proof. Yet another proof by induction. We know that
=1 and ¢ =a,

so the base case is true. Using Corollary [£.2]

aN 1
- gn—1"
gN+1 an + e
and the conclusion follows. O]
Lemma 6.2. Let a = [ag,a1,as2...] be an irrational number and Z—IJ\V{ be its Nth convergent. Then for all
N0,
-1
qn|lagn]| = ([G'N+17aN+27aN+3 .+ 0,an,an—1,. .., Cl1]) .
Proof. By Lemma [5.5) we deduce that
qN
anllegn || = —————
ON+19N T gN-1
_ 1
- N —1
O B
—1
= ([CLN+17QN+27GN+3 ]+ [O’aNaaN—lv-“’al]) )
where the last line follows from the previous lemma and the definition of apn41. O

Lemma 6.3. For an irrational number « = [ag, a1, as,...],
. -1
p(a) = liminf ([aN+1,aN+2,aN+3 L]+ 0an, an—1, -, al]) .
N—o0

Proof. We first note that Theorem implies Theorem Since we know that the best possible

constant is the one in Theorem by the definition of p(«), p(a) < %, and the conclusion follows. [
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Title - Adding fractions wrongly, an introduction to Diophantine Approximation

What happens if we define the addition of fractions in the 'wrong’ way: a/b+c¢/d =a+ ¢/b+d?
Surprisingly, this 'wrong’ definition opens the door to a beautiful part of number theory: Diophantine
Approximation, the study of how well the rationals can approximate real numbers. In this talk, we will
uncover the structure of these 'wrongly added’ fractions, and use it to prove a few of the fundamental
results in the field, namely Dirichlet’s Theorem, which guarantees infinitely many ’good’ rational
approximations, and Hurwitz’s Theorem, which gives us the best possible bound for these
approximations. We will explore how Diophantine Approximation connects to transcendental number
theory, proving Liouville’s Theorem and constructing explicit examples of transcendental numbers,
thereby establishing their existence. The talk will be accessible to all undergraduates.
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