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1 What are Sieves?

Suppose we were tasked to estimate the number of primes in the interval [N, 2N ],
for some large integer N . One way to approach this problem is by means of the
inclusion-exclusion principle. We could first remove all the multiples of 2, remove all
the multiples of 3, so a preliminary estimate will be

#{p ∈ [N, 2N ] : p prime} ≈ N −
⌊
N

2

⌋
−
⌊
N

3

⌋
. . .

But whilst we were removing the multiples of 2 and 3, we double-counted the mul-
tiples of 6, we ’removed’ them twice! To correct for this, we will have to add all the
multiples of 6 to our estimate, which gives us

#{p ∈ [N, 2N ] : p prime} ≈ N −
⌊
N

2

⌋
−
⌊
N

3

⌋
+

⌊
N

6

⌋
. . .

It would be too ambitious to aim to continue this process forever, as N is large, so
we are forced to be slightly clever about when we stop this process. As a matter of
formalising this argument, one would use the Möbius function function, defined as
follows

Definition 1.1. The Möbius function µ(n) is defined by

µ(n) =


1 if n = 1,

(−1)k if n is the product of r distinct primes,
0 if n is divisible by the square of a prime.

As a sanity check, the reader is invited to check that µ(2) = µ(3) = −1, and µ(6) =
1, which agrees with our intuition. This is essentially Brun’s Pure Sieve, developed
by Viggo Brun in 1915. Using his sieve [Bru19], in 1919, Brun showed that the sum
of the reciprocals of the twin primes is convergent! More specifically, he showed the
following

Theorem 1.2. (Brun, 1920) Let π2(x) denote the number of primes p not exceeding
x such that p+ 2 is also prime. Then

π2(x) ≪
x(log log x)2

(log x)2
.

We would not explore the Brun Sieve in this article. Instead, we will go through the
Selberg Sieve, a method developed by the late Fields Medalist Atle Selberg, which
in many cases leads to better bounds than Brun’s method. Using the sieve, we will
prove the Schnirelmann-Goldbach theorem, which states that every integer greater
than one is the sum of a bounded number of primes.
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2 Preliminaries

We begin with introducing some notation and some results, most of which will be
from Foundations or Introduction to Number Theory.

Definition 2.1. Let D be a subset of the complex numbers C and let f : D → C be
a complex-valued map defined on D. We will write

f(x) = O(g(x))

if g : D → R+ and there is a positive constant A such that

|f(x)| ≤ Ag(x)

for all x ∈ D.

Remark. We will also use the notation f(x) ≪ g(x) or g(x) ≫ f(x) to indicate
f(x) = O(g(x)).

Definition 2.2. An arithmetic function is a complex-valued function whose domain
is the set of all positive integers.

Definition 2.3. An arithmetic function f(n) is multiplicative if

f(mn) = f(m)f(n),

for all m,n satisfying gcd(m,n) = 1.

Similarly, we define

Definition 2.4. An arithmetic function f(n) is completely multiplicative if

f(mn) = f(m)f(n),

for all m,n ∈ N.

For ease of notation, we let (m,n) denote the greatest common divisor of the integers
m and n, and [m,n] to denote the least common multiple of the integers m and n.

Definition 2.5. A nonempty set D of positive integers is called divisor-closed if
whenever n ∈ D and d divides n, then d ∈ D.

Using the properties of the Möbius function, we get the following result.

Theorem 2.6 (Möbius inversion formula). Let D be a finite divisor-closed set, and
let f and g be functions defined on D. If

g(n) =
∑
d∈D
n|d

f(d),

for all n ∈ D, then

f(n) =
∑
d∈D
n|d

µ(
d

n
)g(d)

for all n ∈ D. A similar converse statement also holds.
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Proof. Refer to Appendix A

We introduce the following identity, which we will use in the next chapter.

Lemma 2.7. Let φ denote the Euler totient function, and µ denote the Möbius
function. We have the following identity

d

φ(d)
=
∑
r|d

µ(r)2

φ(r)
.

Proof. Observe that both sides of the expression are multiplicative; hence, it suffices
to show the result for prime powers. Let d = pk, then

pk

φ(pk)
=

pk

pk − pk−1
=

p

p− 1
= 1 +

1

p− 1
=
∑
r|pk

µ(r)2

φ(r)
.

We now introduce some prime-counting functions.

Definition 2.8.
π(x) =

∑
p≤x

1,

and
ϑ(x) =

∑
p≤x

log p,

where p is prime.

The following theorem is due to Chebyshev.

Theorem 2.9 (Chebyshev, 1850).

π(x) = O

(
x

log x

)
Proof. ([Coj05], p.8) We note that∏

n<p≤2n

p

∣∣∣∣ (2nn
)

.

Now since (
2n

n

)
≤ 22n,

after taking logarithms,
ϑ(2n)− ϑ(n) ≤ 2n log 2.

We repeat this argument successivly to get

ϑ(n)− ϑ(
n

2
) ≤ n log 2

ϑ(
n

2
)− ϑ(

n

4
) ≤ n

2
log 2
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...

Now by summing the inequalities, we get

ϑ(2n) ≤ 4n log 2.

In other words,
ϑ(x) = O(x).

Finally

x ≫ ϑ(x) ≥
∑

√
x<p≤x

log p

≥ 1

2
(log x)(π(x)− π(

√
x))

≥ 1

2
(log x)(π(x)) +O(

√
x log x).

Now using1
x

log x
≫ xε, for all 0 < ε < 1,

we conclude that π(x) = O (x/ log x).

Using the result above, we have the following result.

Lemma 2.10. Let r(N) denote the number of representations of the integer N as
the sum of two primes. Then ∑

N≤x

r(N) ≫ x2

(log x)2
.

Proof. [Nat96], pp The proof is a counting argument, a common strategy in this
article. We note that if p, q are primes such that p, q ≤ x/2, then p+ q ≤ x. Hence,
by Theorem 2.9 ∑

N≤x

r(N) ≥ π(x/2)2 ≫ (x/2)2

(log x/2)2
≫ x2

(log x)2
.

Definition 2.11. To every n × n symmetric matrix A = (ai,j) we associate the
quadratic form FA defined by

FA(x1, . . . , xn) =

n∑
i=1

n∑
j=1

ai,jxixj .

For example, if we are considering In, the n×n identity matrix, then the associated
quadratic form is

FIn(x1, . . . , xn) = x21 + · · ·+ x2n.

The following result is an application of the Cauchy-Schwarz inequality, which we
state without proof.

1The reader is invited to check this by considering the limit of xε/(x/ log x) as x → ∞.
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Lemma 2.12. Let a1, a2, . . . , an be positive real numbers and b1, b2 . . . , bn be any
real numbers. The minimum value of the quadratic form

Q(y1, y2, . . . , yn) = a1y
2
1 + · · ·+ any

2
n

subject to the linear constraint b1y1 + . . . bnyn = 1 is

m =

(
n∑

i=1

b2i
ai

)−1

and this value is attained iff yi =
mbi
ai

, for all i = 1, 2, . . . , n.

Proof. Refer to Appendix A.

3 Selberg Sieve

In this section, we will go through the Selberg Sieve, introduced by Atle Selberg in
a short paper of his back in 1947 [Sel84]. We will use the sieve to obtain an upper
bound on the representations of an even integer as the sum of two primes. We begin
with a simpler case, with the sifting of an interval.

Let P be a positive integer. Let S(x, y;P ) denote the number of intgers x < n ≤ x+y
such that (n, P ) = 1. The goal is to derive an upper bound for S(x, y;P ).

Selberg began by replacing the Möbius function in Bruns Pure sieve with Λn, a
real-valued arithmetic function, subject only to the constraint that Λ1 = 1. Hence

(∑
d|n

Λd

)2

≥

{
1 if n = 1

0 if n ≥ 1.

Noting that the sum over the Λ′
ds squared is nonnegative,

S(x, y;P ) ≤
∑

x<n≤x+y

(∑
d|P
d|n

Λd

)2

(1)

=
∑

x<n≤x+y

∑
d|P
d|n

Λd

∑
e|P
e|n

Λe

=
∑
d|P
e|P

ΛdΛe

∑
x<n≤x+y
d|n,e|n

1

=
∑
d|P
e|P

ΛdΛe

(⌊
x+ y

[d, e]

⌋
−
⌊

x

[d, e]

⌋)

=
∑
d|P
e|P

ΛdΛe

(
x+ y

[d, e]
− x

[d, e]
+O(1)

)

7



= y
∑
d|P
e|P

ΛdΛe

[d, e]
+
∑
d|P
e|P

ΛdΛe ·O(1)

= y
∑
d|P
e|P

ΛdΛe

[d, e]
+O

((∑
d|P

|Λd|
)2)

,

where the first line follows from our constraint that Λ1 = 1, and in the fourth equality
we used ⌊t⌋ = t+O(1). The final equality follows from the definition of big-O. The
final expression we obtain has the status of ‘main term’ and ‘error term’ respectively.

This is where Selberg’s genius becomes apparent. With some effort, one can rewrite
the expression in the main term of the inequality as a quadratic form, and by applying
Lemma 2.12, we can minimize it, which in turn yields better bounds than those
obtained using the Brun Sieve.

As a slight digression, using his approach, one can improve the bound in Theorem 1.2
to

π2(N) ≪ x

(log x)2
.

Now, further suppose that Λn = 0 for n > z2, where z is a parameter we choose. We
have the following result.

Theorem 3.1. (Selberg, 1947) Let x, y and z be real numbers such that y > 0 and
z ≥ 1. For any positive integer P we have

S(x, y;P ) ≤ y

LP (z)
+O(z2Lp(z)

−2),

where

LP (z) =
∑
n≤z
n|P

µ(n)2

φ(n)
,

and φ is the Euler totient function.

Remark. Before we begin with the lengthy proof, we provide a brief overview of
the main ideas here. We will rewrite the main term into a quadratic form. By
Lemma 2.6, we derive a linear constraint to our quadratic form, and hence we can
apply Lemma 2.12. For the error term, we want to control Λd. Since we know pre-
cisely what our choices of Λd must be from Lemma 2.12, we have to be a little clever
in bounding the error term.

Proof. ([Mon06],[Nat96]) We continue from (1). We may assume that P is square-
free. Since [d, e](d, e) = de, and

∑
d|n φ(d) = n, we see that

1

[d, e]
=

(d, e)

de
=

1

de

∑
f |d,f |e

φ(f).

2This is truncating our sieve, just as in the introduction.
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Hence ∑
d|P
e|P

ΛdΛe

[d, e]
=
∑
d|P
e|P

ΛdΛe

de

∑
f |d,f |e

φ(f)

=
∑
f |P

φ(f)
∑
f |d|P

Λd

d

∑
f |e|P

Λe

e

=
∑
f |P

φ(f)y2f , (2)

where
yf =

∑
d

f |d|P

Λd

d
.

Noting that the set of all such d′s, ie D = {d : d | P} is a divisor closed set, by
Theorem 2.6 and changing indexes after we have

Λd

d
=
∑
d

d|f |P

yfµ

(
f

d

)
(3)

So the constraint Λ1 = 1 is now equivalent to the linear constraint:∑
f |P

yfµ(f) = 1.

The goal is to minimize our expression in (2). We do that by choosing specific values
for the y′fs.

3 By Lemma 2.12, we see that the choice of values for our y′ks are

yk =
µ(f)

φ(f)Lp(z)
, where Lp(z) =

∑
n≤z
n|P

µ(n)2

φ(n)
.

We are done with the main term. For the error term, noting that P is square-free,

Λd =
d

LP (z)

∑
f

d|f |P
f≤z

µ(f)µ(f/d)

φ(f)
.

Letting m = f/d, the expression now reads

Λd =
dµ(d)

LP (z)φ(d)

∑
m|P

(m,d)=1
m≤z/d

µ(m)2

φ(m)
.

Therefore, ∑
d≤z

|Λd| ≤
1

LP (z)

∑
d≤z

d

φ(d)

∑
m≤z/d

1

φ(m)

3We can think of this as choosing values for our Λ′
ds, which are the so called ’sieve-weights’.
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=
1

LP (z)

∑
m≤z

1

φ(m)

∑
d≤z/m

d

φ(d)
.

By Lemma 2.7, and yet another counting argument,∑
d≤z/m

d

φ(d)
=
∑

d≤z/m

∑
r|d

µ(r)2

φ(r)

=
∑

r≤z/m

µ(r)2

φ(r)

∑
d≤z/m

r|d

1

=
∑

r≤z/m

µ(r)2

φ(r)

⌊
z/m

r

⌋

≤ z

m

∞∑
r=1

µ(r)2

rφ(r)
≪ z

m
,

where the conclusion follows since the sum is convergent. (See Appendix A). Finally,∑
d≤z

|Λd| ≪
z

LP (z)

∑
m≤z

1

mφ(m)
≪ z

LP (z)
,

which is precisely the claim.

Remark. To actually use this form of the result, one has to find a lower bound for
the quantity z

LP (z) . However, we will not cover it in this article; readers may refer to
[Mon06] to find a full account of this last part.

We now move on to an application of the sieve. As mentioned before, we aim to
derive an upper bound for the number of representations of an even integer as the
sum of two primes.

Theorem 3.2. Let N be an even integer, and let r(N) denote the number of repre-
sentations of N as a sum of two primes. Then

r(N) ≪ N

(logN)2

∏
p|N

(
1 +

1

p

)
,

where the implied constant is absolute.

Unfortunately, we would not be covering the entire proof of this result. We will only
highlight the first few steps, which involve setting up the scene for the Selberg Sieve
approach. The reader may wish to consult Nathonson/Ben Green.

Proof. (Sketch) We first define

A := {n(N − n) : n ≤ N}.

Let z := N
1
3 . If n ≤ N , with both n and N − n being prime, then we either have (i)

n ≤ z, (ii) N − n ≤ z or (iii) n(N − n) has no prime factors ≤ z. Hence

r(N) ≤ 2z + S(A, z),
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where S(A, z) denotes the number of elements of A that are not divisible by z. The
main difference here is that we now aim to sift over a set, whereas in our previous
theorem, we sifted over an interval. To reduce the problem of sifting a set into sifting
an interval, let Ad denote the elements in A that are divisible by d, that is

Ad = {n ≤ N : d|n(N − n)}.

It now follows that

S(A, z) ≤
∑
n≤N

( ∑
d|n(N−n)

d≤z

Λd

)2

=
∑

d1,d2≤z

Λd1Λd2 |A[d1,d2]|, (4)

after expanding out and rearranging the sum, a similar technique we used at the
beginning of this chapter. Now we need to estimate the size of Ad. We have

|Ad| = g(d)
N

d
+Rd, (5)

where g(d) is the number of solutions x(N − x) ≡ 0 mod d, and |Rd| ≤ g(d).
Intuitively, we first split the interval of size N into smaller intervals of length d,
hence the quantity N

d . Then we count the number of solutions in each interval, as
each interval forms a set of complete residues modulo d, hence g(d)Nd . The Rd term
comes from the fact that we cannot exactly divide {1, 2, . . . , N} into intervals of
length d, and there can be an interval of length < d left, that may or may not
contain solutions, hence Rd ≤ g(d). Without loss of generality, we may assume d to
be squarefree. Then, by the Chinese Remainder Theorem, we have

g(d) =
∏
p|d

g(p). (6)

Putting everything together by substituting 5 and 6 into 4

S(A, z) ≤ N
∑

d1,d2≤z

Λd1Λd2g([d1, d2])

[d1, d2]
+

∑
d1,d2≤z

|Λd1 ||Λd2 |g([d1, d2]).

Thus, we have successfully reduced our problem of sifting a set into sifting an interval,
and we are in a position to apply our previous techniques used in Theorem 3.1. After
some work (namely, minimising the quadratic form), one can show that the minimum
value of our main term is

1

D
=

∑
d≤z,d squarefree

1

f(d)
,

where
f(k) =

∑
δ|k

µ

(
k

δ

)
δ

g(δ)
.
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It remains to bound the main term and error term; we omit the lengthy proof here
and take the following bounds for granted. The reader is directed to Nathonson/Ben
Green for the full proof. We have

D ≫ log2(N) · (
∏
p|N

(1 +
1

p
))−1,

and
E =

∑
d1,d2≤z

|Λd1 ||Λd2 |g([d1, d2]) ≪ N
2
3 .

Finally,

S(A, z) ≪ N

(logN)2

∏
p|N

(
1 +

1

p

)
,

which follows after substituting our bound for D and E, and the claim is proven.

4 Schnirelmann Density

We begin this section by defining the Schnirelmann Density, who first studied it in
1939 [L G39]. It will give us information, or more precisely, quantify how ‘dense’ the
set we are considering is. This will be key in proving the Schnirelmann-Goldbach
Theorem.

Definition 4.1. Let A be a set of infinite non-negative integers. Then the Schnirelmann
Density of A, denoted σ(A) is given by

σ(A) = inf
N=1,2,...

1

N
|A ∩ {1, . . . , N}| .

We shall also use the following notation

A[N ] = A ∩ {1, . . . , N}.

In other words, we can rewrite Definition 4.1 as

σ(A) = inf
N=1,2,...

A[N ]

N
.

For every set A of integers, we deduce that

0 ≤ σ(A) ≤ 1,

which follows from the definition of σ(A),

Moreoever, if σ(A) = α, then we have

A[N ] ≥ αN.

It now follows that σ(A) = 1 if and only if A contains every positive integer.
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The Schnirelmann density looks very abstract at first sight, but it really aligns with
our intuition. Suppose we were tasked to write 897122394 as a sum of 1′s and 2′s.
It would not require much to convince ourselves that this would be pretty straight-
forward. However, suppose we wanted to write the same number, but as a sum of
6′s and 7′s, then the result is no longer immediately obvious.

The Schnirelmann density does exactly this; by definition, it is very sensitive to the
small values of the set A we are considering. Indeed, if σ(A) > 0, then 1 ∈ A.

Definition 4.2. Let A,B be sets of integers. We define the sumset A+B to be the
set consisting of all integers of the form a+b, where a ∈ A and b ∈ B. In set notation

A+ B := {a+ b : a ∈ A, b ∈ B}.

Similarly, we define the h-fold sumset of A as

hA = A+ · · ·+A︸ ︷︷ ︸
h times

.

Definition 4.3. A set A is called a basis of order h if hA contains every nonnegative
integer. In other words, every nonnegative integer can be written as a sum of at most
h (not necessarily distinct) elements of A.

We also say that A is a basis of finite order if A is a basis of order h, for some h ≥ 1.
It follows that A is a basis of finite order if and only if σ(hA) = 1 for some h ≥ 1.

Using this newly defined object, Schnirelmann showed the following.

Theorem 4.4. (Schnirelmann, 1940) Let A be a set of integers such that 0 ∈ A and
σ(A) > 0. Then A is a basis of finite order.

Needless to say, the rest of this chapter will be devoted to proving this result. We
start gently with some elementary lemmas.

Lemma 4.5. Let A and B be sets of integers such that 0 ∈ A, 0 ∈ B. If n ≥ 0, and
A[n] + B[n] ≥ n, then n ∈ A+ B.

Proof. [Nat96] If n ∈ A or n ∈ B then we are done, henceforth suppose not. We
define the sets A′ and B′ by

A′ := {n− a : a ∈ A, 1 ≤ a ≤ n− 1} and B′ := {b : b ∈ B, 1 ≤ b ≤ n− 1}.

Then |A′| = A[n], as n /∈ A. Similarly we have |B′| = B[n]. Moreover,

A′ ∪ B′ ⊆ [1, n− 1].

Since |A′|+ |B′| = A[n] + B[n] ≥ n, it follows that A′ ∩ B′ ̸= ∅. Hence n− a = b for
some a ∈ A, b ∈ B, and n = a+ b ∈ A+ B.

We immediately deduce the following result.
4The authors’ favourite prime!

13



Corollary 4.6. Let A be a set of integers such that 0 ∈ A and σ(A) ≥ 1/2. Then A
is a basis of order 2.

Proof. [Nat96] By definition of σ(A), we have

A[n] ≥ n

2
,

for every integer nonnegative integer n. Hence, A[n]+A[n] ≥ n, and the claim follows
from our previous result.

Theorem 4.7. (Schnirelmann, 1940) Let A and B be sets of integers such that 0 ∈
A and 0 ∈ B. Let σ(A) = α and σ(B) = β. Then

σ(A+ B) ≥ α+ β − αβ.

Proof. [Nat96] We count the number of elements in (A+ B)[N ]. Let

1 = a0 < a1 < · · · < ak ≤ N

be the k+1 elements of A[N ]. Since 0 ∈ B, each of these elements are in (A+B)[N ]
. Now for each i = 0, 1, . . . , k − 1, consider the set ai + B[ai+1 − ai − 1]. We claim
that these elements lie strictly in between ai and ai+1. Indeed, let b1, b2, . . . , bj be
elements of B[ai+1 − ai − 1], then

1 ≤ b1 < · · · < bj ≤ ai+1 − ai − 1

1 + ai ≤ b1 + ai < · · · < bj + ai ≤ ai+1 − 1

ai < b1 + ai < · · · < bj + ai < ai+1.

Consider the elements of ak + B[N − ak], they lie in the interval (ak, N ]. Putting
everything together

(A+ B)[N ] = A[N ] +
k−1∑
i=0

|B[ai+1 − ai − 1]|+ |B[N − ak]|

≥ αN + β

k−1∑
i=0

ai+1 − ai − 1 +N − ak

= αN + β(−1− k +N)

≥ αN + β(−αN +N)

= αN + βN − αβN.

Finally,

σ(A+ B) = inf
n=1,2,...

(A+ B)[N ]

N
≥ α+ β − αβ.

The final inequality can also be expressed as follows

1− σ(A+ B) ≤ (1− σ(A))(1− σ(B)).

We are finally ready to prove Theorem 4.4.
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Proof. (of Theorem 4.4)[Nat96] Let σ(A) = α, by definition we know that 0 < α ≤ 1.
If α = 1, then there is nothing to prove. Suppose that α < 1, then

(1− α)k ≤ 1/2, for some positive integer k.

After applying Theorem 4.7 inductively,

1− σ(kA) ≤ (1− σ(A))k = (1− α)k ≤ 1/2.

So we have σ(kA) ≥ 1/2, and by Corollary 4.6, kA is a finite basis of order 2. It
follows that A is a finite basis of order 2k.

5 Towards the Goldbach Conjecture

In this section, we will finally reap the rewards of all the hard work we have previously
done. As usual, we begin with a few lemmas.

Lemma 5.1. Let d, e be positive integers. Then

[d, e] ≥
√
de.

Proof. Let p1, . . . , pk be the complete list of prime factors of both d and e. It follows
that

d = pa11 . . . pakk and e = pb11 . . . pbkk ,

for nonnegative integers a1, . . . , ak, b1, . . . , bk. On the other hand, define ci := max{ai, bi}
for each i = 1, . . . , k, then we have

[d, e] = pc11 . . . pckk .

Hence, it suffices to show that ci ≥ (ai + bi)/2, which follows by how we defined
ci.

Lemma 5.2. Let r(N) denote the number of representations of N as the sum of two
primes. Then ∑

N≤x

r(N)2 ≪ x3

(log x)4
.

Proof. [Nat96] By Theorem 3, if N is even, then

r(N) ≪ N

(logN)2

∏
p|N

(
1 +

1

p

)
≤ N

(logN)2

∑
d|N

1

d
.

The inequality also holds for odd integers, since an odd integer N can be written as
a sum of two primes if and only if N − 2 is prime, in which case r(N) = 2. Hence

r(N)2 ≪ N2

(logN)4

(∑
d|N

1

d

)2

.
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Now summing both sides up to x, we obtain∑
N≤x

r(N)2 ≪
∑
N≤x

N2

(logN)4

∑
d|N

1

d

∑
e|N

1

e

≪ x2

(logN)4

∑
N≤x

∑
d|N

∑
e|N

1

de

=
x2

(logN)4

∑
d,e≤x

1

de

∑
N≤x
[d,e]|N

1

=
x2

(logN)4

∑
d,e≤x

1

de

x

[d, e]

≤ x3

(logN)4

∑
d,e≤x

1

(de)3/2

≤ x3

(logN)4

(∑
d≤x

1

d3/2

)2

≪ x3

(logN)4
,

as the final sum is convergent. This concludes the proof.

Theorem 5.3. (Goldbach-Schnirelmann) Every integer greater than one is the sum
of a bounded number of primes, where the implied constant is absolute.

Proof. [Nat96] We start by showing the set

P̃ := {0, 1} ∪ {p+ q : p, q prime}

has positive Schnirelmann density. Let r(N) denote the number of representations
of N as the sum of two primes. By the Cauchy-Schwarz inequality,(∑

N≤x

r(N)

)2

≤
∑
N≤x

r(N)≥1

1
∑
N≤x

r(N)2 ≤ P̃[x]
∑
N≤x

r(N)2.

By Lemma 2.10 and Lemma 5.2, we have

P̃[x]

x
≥ 1

x

(∑
N≤x r(N)

)2

∑
N≤x r(N)2

≫ 1

x

x4

(log x)4
(log x)4

x3

≫ 1.

So there exists a number c1 > 0 such that P̃[x] ≥ c1x for all x ≥ x0. Since 1 ∈ P̃, it
follows that there exists a number c2 > 0 such that P̃[x] ≥ c2x for 1 ≤ x ≤ x0. Now
choose c := min{c1, c2}, then P̃[x] > cx, for all x ≥ 1, and so σ(P̃) > 0. Since P̃
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has positive Schnirelmann density, by Theorem 4.4, P̃ is a basis of finte order, say of
order h for some positive integer h. Let N ≥ 2. If N = 2 then we are done. Suppose
not, write

N − 2 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
k times

+(p1 + q1) + · · ·+ (pi + qi),

with i+ k ≤ h. If k is even, then we can write N as

N = 2 + 2 + · · ·+ 2︸ ︷︷ ︸
k
2
+1 times

+(p1 + q1) + · · ·+ (pi + qi).

If k is odd, then we write

N = 2 + 2 + · · ·+ 2︸ ︷︷ ︸
k−1
2

times

+3 + (p1 + q1) + · · ·+ (pi + qi).

In both cases, we have written N as the sum of at most

i+ i+ k ≤ 3h

primes, and the claim follows.

6 What now?

We have shown that there exists a bound, but what about the work done to actually
compute it? We let h be the smallest number h such that every integer greater than
one can be written as a sum of at most h primes. In the literature, we usually refer
to the number h as Schnirelmann’s constant. In particular, the Goldbach Conjecture
implies that Schnirelmann’s constant is 3. There has been substantial progress in
trying to improve the upper bound for Schnirelmann’s constant. In 1969, Klimov gave
an upper bound of 6 · 109, which was improved by Klimov, Pil’tai, and Sheptitskaya
to 115. In 1977, R.C Vaughan further reduced the bound to 27. A full historical
account up to this point can be found at [Vau79]. The final major advancement was
made by Harald Helfgott in 2013[Hel15], who solved the ternary Goldbach problem
via the Hardy-Littlewood circle method, which in turn implies that Schnirelmann’s
constant is at most 4.
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A Appendix A

Theorem A.1. Let µ denote the Möbius function. Then

∑
d|n

µ(d) =

{
1, if n = 1,

0, if n ≥ 2.

Proof. The claim is true for n = 1. Suppose n ≥ 2, then

n =
k∏

i=1

prii ,

where k ≥ 1, and the p′is are distinct primes. Let
∑′ denote a sum over squarefree

integers. Then

∑
d|n

µ(d) =

′∑
d|n

µ(d)

=
∑

d|p1...pk

µ(d)

=
∑

d|p1...pk

(−1)ω(d),

where ω(d) is the number of distinct prime divisors n. Finally,

∑
d|p1...pk

(−1)ω(d) =
k∑

l=0

(
k

l

)
(−1)l = 0.

Theorem A.2. Let D be a finite divisor-closed set, and let f and g be functions
defined on D. If

g(n) =
∑
d∈D
n|d

f(d),

for all n ∈ D, then

f(n) =
∑
d∈D
n|d

µ(
d

n
)g(d)

for all n ∈ D. Conversely, if

f(n) =
∑
d∈D
n|d

µ

(
d

n

)
g(d)

for all n ∈ D, then
g(n) =

∑
d∈D
n|d

f(d).

18



Proof. ∑
d∈D
n|d

µ

(
d

n

)
g(d) =

∑
d∈D
n|d

µ

(
d

n

)∑
k∈D
k|d

f(k)

=
∑
nh∈D

µ(h)
∑
k∈D
nh|k

f(k)

=
∑
nh∈D

µ(h)
∑

nhl∈D
f(nhl)

=
∑
nr∈D

f(nr)
∑
h∈D
h|r

µ(h)

=
∑
nr∈D

f(nr)
∑
h|r

µ(h)

= f(n),

where the final equality is obtained using the previous result. The proof in the op-
posite direction is similar.

Lemma A.3. Let a1, a2, . . . , an be positive real numbers and b1, b2 . . . , bn be any real
numbers. The minimum value of the quadratic form

Q(y1, y2, . . . , yn) = a1y
2
1 + · · ·+ any

2
n

subject to the linear constraint b1y1 + . . . bnyn = 1 is

m =

(
n∑

i=1

b2i
ai

)−1

and this value is attained iff yi =
mbi
ai

, for all i = 1, 2, . . . , n.

Proof. Note that

1 =

( n∑
i=1

biyi

)2

=

( n∑
i=1

(
bi√
ai

)
√
aiyi

)2

≤
( n∑

i=1

b2i
ai

)( n∑
i=1

aiy
2
i

)
,

after applying the Cauchy-Schwarz inequality. Hence
n∑

i=1

aiy
2
i ≥

( n∑
i=1

b2i
ai

)−1

= m.

Moreover, equality holds if and only if there exists a real number t such that for all
i = 1, . . . , n we have

√
aiyi =

tbi√
ai
,
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or equivalently

yi =
tbi
ai

.

This implies that

1 =

n∑
i=1

biyi = t

n∑
i=1

b2i
ai

=
t

m
,

and so
t = m,

which implies

yi =
mbi
ai

.

Conversely, if yi = mbi
ai

for each i, then
∑n

i=1 biyi = 1 and Q(y1, . . . , yn) = m.

Theorem A.4. The sum
∞∑
r=1

1

rφ(r)

is convergent.

Proof. We first show the inequality

φ(n) ≥
√

n

2
,

for sufficiently large n. Since φ is multiplicative, it suffices to show the inequality for
prime powers. Let n = pk, then the inequality is equivalent to

pk−1(p− 1) ≥ pk/2√
2
,

which can be reduced to
pk−2(p− 1)2 ≥ 1

2
.

If k = 1, then the inequality reads

(p− 1)2 ≥ p

2
,

which holds for all p ≥ 2. If k ≥ 2, then there is nothing to prove. Anyhow, we have
that the inequality holds, with equality at n = 2. The convergence of our summand
now follows. Indeed,

∞∑
r=1

1

rφ(r)
≤

∞∑
r=1

√
2

r
√
r
,

and the latter series converges.
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